首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Understanding bursting oscillations as periodic slow passages through bifurcation and limit points
Authors:Lisa Holden  Thomas Erneux
Institution:(1) Department of Engineering Sciences and Applied Mathematics, Northwestern University, 60208 Evanston, IL, USA;(2) Present address: Department of Mathematics, Kalamazoo College, 49007 Kalamazoo, MI, USA
Abstract:We consider a biochemical system consisting of two allosteric enzyme reactions coupled in series. The system has been modeled by Decroly and Goldbeter (J. Theor. Biol. 124, 219 (1987)) and is described by three coupled, first-order, nonlinear, differential equations. Bursting oscillations correspond to a succession of alternating active and silent phases. The active phase is characterized by rapid oscillations while the silent phase is a period of quiescence. We propose an asymptotic analysis of the differential equations which is based on the limit of large allosteric constants. This analysis allows us to construct a time-periodic bursting solution. This solution is jumping periodically between a slowly varying steady state and a slowly varying oscillatory state. Each jump follows a slow passage through a bifurcation or limit point which we analyze in detail. Of particular interest is the slow passage through a supercritical Hopf bifurcation. The transition is from an oscillatory solution to a steady state solution. We show that the transition is delayed considerably and characterize this delay by estimating the amplitude of the oscillations at the Hopf bifurcation point.
Keywords:Large allosteric constants  Delayed bifurcation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号