Induction and Inhibition of Type I Interferon Responses by Distinct Components of Lymphocytic Choriomeningitis Virus |
| |
Authors: | Shenghua Zhou Anna M. Cerny An Zacharia Katherine A. Fitzgerald Evelyn A. Kurt-Jones Robert W. Finberg |
| |
Affiliation: | Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts |
| |
Abstract: | Type I interferons (IFNs) play a critical role in the host defense against viruses. Lymphocytic choriomeningitis virus (LCMV) infection induces robust type I IFN production in its natural host, the mouse. However, the mechanisms underlying the induction of type I IFNs in response to LCMV infection have not yet been clearly defined. In the present study, we demonstrate that IRF7 is required for both the early phase (day 1 postinfection) and the late phase (day 2 postinfection) of the type I IFN response to LCMV, and melanoma differentiation-associated gene 5 (MDA5)/mitochondrial antiviral signaling protein (MAVS) signaling is crucial for the late phase of the type I IFN response to LCMV. We further demonstrate that LCMV genomic RNA itself (without other LCMV components) is able to induce type I IFN responses in various cell types by activation of the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5. We also show that expression of the LCMV nucleoprotein (NP) inhibits the type I IFN response induced by LCMV RNA and other RIG-I/MDA5 ligands. These virus-host interactions may play important roles in the pathogeneses of LCMV and other human arenavirus diseases.Type I interferons (IFNs), namely, alpha interferon (IFN-α) and IFN-β, are not only essential for host innate defense against viral pathogens but also critically modulate the development of virus-specific adaptive immune responses (6, 8, 28, 30, 36, 50, 61). The importance of type I IFNs in host defense has been demonstrated by studying mice deficient in the type I IFN receptor, which are highly susceptible to most viral pathogens (2, 47, 62).Recent studies have suggested that the production of type I IFNs is controlled by different innate pattern recognition receptors (PRRs) (19, 32, 55, 60). There are three major classes of PRRs, including Toll-like receptors (TLRs) (3, 40), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) (25, 48, 51), and nucleotide oligomerization domain (NOD)-like receptors (9, 22). TLRs are a group of transmembrane proteins expressed on either cell surfaces or endosomal compartments. RLRs localize in the cytosol. Both TLRs and RLRs are involved in detecting viral pathogens and controlling the production of type I IFNs (52, 60). In particular, the endosome-localized TLRs (TLR3, TLR7/8, and TLR9) play important roles in detecting virus-derived double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and DNA-containing unmethylated CpG motifs, respectively. In contrast, RIG-I detects virus-derived ssRNA with 5′-triphosphates (5′-PPPs) or short dsRNA (<1 kb), whereas melanoma differentiation-associated gene 5 (MDA5) is responsible for recognizing virus-derived long dsRNA as well as a synthetic mimic of viral dsRNA poly(I):poly(C) [poly(I·C)] (24, 60). Recognition of viral pathogen-associated molecular patterns (PAMPs) ultimately leads to the activation and nuclear translocation of interferon regulatory factors (IRFs) and nuclear factor κB (NF-κB), which, in turn, switches on a cascade of genes controlling the production of both type I IFNs and other proinflammatory cytokines (10, 11, 60).Lymphocytic choriomeningitis virus (LCMV) infection in its natural host, the mouse, is an excellent system to study the impact of virus-host interactions on viral pathogenesis and to address important issues related to human viral diseases (1, 45, 49, 67). LCMV infection induces type I IFNs as well as other proinflammatory chemokines and cytokines (6, 41). Our previous studies have demonstrated that TLR2, TLR6, and CD14 are involved in LCMV-induced proinflammatory chemokines and cytokines (66). The mechanism by which LCMV induces type I IFN responses, however, has not been clearly defined (7, 8, 31, 44). The role of the helicase family members RIG-I and MDA5 in virus-induced type I IFN responses has been recently established. RIG-I has been found to be critical in controlling the production of type I IFN in response to a number of RNA viruses, including influenza virus, rabies virus, Hantaan virus, vesicular stomatitis virus (VSV), Sendai virus (SeV), etc. In contrast, MDA5 is required for responses to picornaviruses (15, 25, 63).In the present study, we demonstrated that LCMV genomic RNA strongly activates type I IFNs through a RIG-I/MDA5-dependent signaling pathway. Our present study further demonstrated that the LCMV nucleoprotein (NP) blocks LCMV RNA- and other viral ligand-induced type I IFN responses. |
| |
Keywords: | |
|
|