首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of RNA polymerase subunit synthesis in Escherichia coli: utilization of DNA-Intercalating drugs as a probe.
Authors:L Chao
Institution:Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29401 USA
Abstract:The effect of four DNA-intercalating drugs on the synthesis of the β and β′ subunits of Escherichia coli RNA polymerase was investigated. Acridine orange, proflavine, ethidium bromide, and berberine sulfate at sublethal doses caused a general reduction in cellular RNA and protein syntheses. Under this condition, acridine orange and proflavine rapidly led to overproduction of the β and β′ subunits in significant amounts. Ethidium bromide and berberine sulfate also caused overproduction of the two subunits but with a delay of 10 min at 30 °C. The β and β′ subunits of RNA polymerase became the major proteins being synthesized by E. coli cells after prolonged treatment with DNA-intercalating drugs. The level of the α subunit of RNA polymerase was not altered by any of the drugs tested. The overproduction of the β and β′ subunits induced by DNA-intercalating drugs is shown to require de novo synthesis of the ββ′ mRNA. These findings indicate that the expression of the ββ′ operon is regulated and that the synthesis of the α subunit is not regulated by the mechanism regulating the ββ′ operon. Taken together with evidence reported by others, these results strongly suggest that the concentration of intracellular free RNA polymerase plays a role in regulating the expression of the ββ′ operon.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号