Abstract: | ![]() Phorbol ester treatment of granulocytes triggers release of superoxide (O ) and a concomitant burst of DNA strand breaks. The relationship between the amount of O and the number of DNA breaks has not previously been explored. To quantify the relatively large amount of O generated over a 40-min period by 1 × 106 granulocytes/mL, a discontinuous “10-min pulse” method employing cytochrome c was used; 140 nmol O per 1 × 106 cells was detected. DNA strand breaks were quantified by fluorimetric analysis of DNA unwinding (FADU). To vary the level of O released by cells, inhibitors of the respiratory burst were used. Sodium fluoride (1–10 mM) and staurosporine (2–10 nM) both inhibited O production. In both cases, however, inhibition of strand breakage was considerably more pronounced than inhibition of O . Zinc chloride (50–200 μM) inhibited both O and DNA breaks, approximately equally. Dinophysistoxin-1 (okadaic acid) inhibited O production more effectively than it inhibited DNA breaks. O dismutes to H2O2, a reactive oxygen species known to cause DNA breaks. The addition of catalase to remove extracellular H2O2 had no effect on DNA breakage. Using pulse field gel electrophoresis, few double-stranded breaks were detected compared to the number detected by FADU, indicating that about 95% of breaks were single-stranded. The level of DNA breaks is not directly related to the amount of extracellular O or H2O2 in PMA-stimulated granulocytes. We conclude that either an intracellular pool of these reactive oxygen species is involved in breakage or that the metabolic inhibitors are affecting a novel strand break pathway. J. Cell. Biochem. 66:219–228, 1997. © 1997 Wiley-Liss Inc. |