首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calpain activation in shear-induced platelet aggregation
Authors:Kazumasa Fujitani  Jun-ichi Kambayashi  Hideo Ariyoshi  Masato Sakon  Shinobu Imajoh-Ohmi  Takashi Nakamura  Morito Monden
Abstract:Fluid shear stress has been known to activate platelet reaction such as aggregation, but the exact mechanism of shear-induced platelet aggregation (SIPA) has not been fully understood. Calpain, an intracellular calcium-activated cysteine protease, is abundant in platelets and is considered to be activated and involved in the proteolytic processes during platelet activation. A possible activation of calpain in SIPA was investigated, employing a newly developed aggregometer and specific monoclonal antibodies to detect activation of calpain. When a shear stress gradient varying between 6 and 108 dyn/cm2 was applied to platelets, activation of μ-calpain was observed only in high-shear-stressed platelets, resulting in the proteolysis of talin. At 1 min after the onset of constant high shear stress of 108 dyn/cm2, μ-calpain activation and proteolysis of talin were detected and increased in a time-dependent manner. Constant shear stress more than 50 dyn/cm2, applied for 5 min, caused μ-calpain activation and proteolysis of talin, which were increased in a shear-force-dependent manner. Calpeptin, a calpain-specific peptide antagonist, caused the complete inhibition of both μ-calpain activation and proteolysis of talin, while SIPA profiles with calpeptin showed almost no change compared to those without calpeptin. These results suggest the possibility of calpain involvement in late phases of shear-induced platelet activation such as cytoskeletal reorganization. J. Cell. Biochem. 66:54–64, 1997. © 1997 Wiley-Liss, Inc.
Keywords:calpain activation  platelet  proteolysis of talin  shear stress  shear-induced platelet aggregation (SIPA)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号