首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response
Authors:Alice T McDuffee  Guillermo Senisterra  Steven Huntley  James R Lepock  Konjeti R Sekhar  Michael J Meredith  Michael J Borrelli  Jason D Morrow  Michael L Freeman
Abstract:While oxidative stress can induce a heat shock response, the primary signals that initiate activation have not been identified. To identify such signals, HepG2 and V 79 cells were exposed to menadione, a compound that redox-cycles to generate superoxide. The oxidative stress generated by menadione resulted in oxidation of protein thiols in a dose-dependent manner. This was followed by protein destabilization and denaturation, as determined by differential scanning calorimetry of whole cells. To directly evaluate the effect of non-native disulfides on protein conformation, Ca2+-ATPase, isolated from rabbit sarcoplasmic reticulum, was chemically modified to contain non-native intermolecular or glutathione (GHS)-mixed disulfides. Differential scanning calorimetry profiles and 1-anilinonaphthalene-8-sulfonic acid fluorescence indicated that formation of non-native disulfides produced protein destabilization, denaturation, and exposure of hydrophobic domains. Cellular proteins shown to contain oxidized thiols formed detergent-insoluble aggregates. Cells treated with menadione exhibited activation of HSF-1, accumulated Hsp 70 mRNA, and increased synthesis of Hsp 70. This work demonstrates that formation of physiologically relevant, non-native intermolecular and GSH-mixed disulfides causes proteins to destabilize, unfold such that hydrophobic domains are exposed, and initiate a signal for induction of the heat shock response. J. Cell. Physiol. 171:143–151, 1997. © 1997 Wiley-Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号