首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Charge transfer photochemistry of quadruply bonded ditungsten halophosphine complexes
Authors:Tsui-Ling C Hsu  Daniel S Engebretson  Sara A Helvoigt  Daniel G Nocera
Institution:

Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

Abstract:The quadruple metal-metal bonded complexes, W2Cl4(PR3)4 (PR3 = PMe3, PMe2Ph, PBu3), photoreact in dichloromethane with near-UV excitation (λ>375 nm) to yield a mixed valence W2(II,III) photoproduct. Electronic absorption and EPR spectra of photolyzed solutions are identical to those obtained from the thermal oxidation of W2Cl4(PR3)4 by PhICI2, which is known to yield W2Cl5(PR3)3. Subsequent reaction of the photolyzed solution yields the oxidized, confacial biotahedral W2(III,III) halophosphine. Analysis of the organic photoproduct reveals that the halocarbon solvent is reduced by one electron to yield the chloromethyl radical. When the radical is produced in low yields, hydrogen abstraction from solvent appears to be sufficiently efficient to compete with dimerization and only chloromethane is observed; however, at higher concentrations, the chloromethyl radicals couple to produce dichloroethane. Photoreaction is observed only with near-UV excitation of the LMCT absorption manifold of W2Cl4(PR3)4. At lower energy wavelengths, transient absorption spectroscopy shows the production of the 1δδ* excited state, which decays to ground state over times commensurate with the decay of 1δδ* luminescence. In hydrocarbon solutions, no transient intermediate or photochemistry is observed, indicating that the LMCT excited state, although capable of reducing a C---X bond, cannot activate the stronger C---H bonds of hydrocarbons. The photochemistry and transient absorption spectroscopy results of the W2Cl4(PR3)4 complexes are compared to our previous studies of the Image homologs.
Keywords:Photochemistry  Tungsten complexes  Metal-metal complexes  Quadruple bond complexes  Halophosphine complexes  Ligand-to-metal charge transfer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号