首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface: a molecular dynamics simulation
Authors:Euston S R  Hughes P  Naser Md A  Westacott R E
Affiliation:School of Life Sciences, International Centre for Brewing and Distilling, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom. s.r.euston@hw.ac.uk
Abstract:Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号