首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Prevascularization of porous biodegradable polymers
Authors:Mikos A G  Sarakinos G  Lyman M D  Ingber D E  Vacanti J P  Langer R
Institution:Department of Chemical Engineering, Massachusetts Institute of Technology, Room E25-342, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139.
Abstract:Highly porous biocompatible and biodegradable polymers in the form of cylindrical disks of 13.5 mm diameter were implanted in the mesentery of male syngeneic Fischer rats for a period of 35 days to study the dynamics of tissue ingrowth and the extent of tissue vascularity, and to explore their potential use as substrates for cell transplantation. The advancing fibrovascular tissue was characterized from histological sections of harvested devices by image analysis techniques. The rate of tissue ingrowth increased as the porosity and/or the pore size of the implanted devices increased. The time required for the tissue to fill the device depended on the polymer crystallinity and was smaller for amorphous polymers. The vascularity of the advancing tissue was consistent with time and independent of the biomaterial composition and morphology. Poly(L-lactic acid) (PLLA) devices of 5 mm thickness, 24.5% crystallinity, 83% porosity, and 166 mum median pore diameter were filled by tissue after 25 days. However, the void volume of prevascularized devices (4%) was minimal and not practical for cell transplantation. In contrast, for amporphous PLLA devices of the same dimensions, and the similar porosity of 87% and median pore diameter of 179 mum, the tissue did not fill completely prevascularized devices, and an appreciable percentage (21%) of device volume was still available for cell engraftment after 25 days of implantation. These studies demonstrate the feasibility of creating vascularized templates of amorphous biodegradable polymers for the transplantation of isolated or encapsulated cell populations to regenerate metabolic organs and tissues. (c) 1993 John Wiley & Sons, Inc.
Keywords:prevascularization  cell transplantation  biodegradable polymers  organ regeneration  tissue engineering
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号