首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Estrogen Receptor Hormone Agonists Limit Trauma Hemorrhage Shock-Induced Gut and Lung Injury in Rats
Authors:Danielle Doucet  Chirag Badami  David Palange  R Paul Bonitz  Qi Lu  Da-Zhong Xu  Kolenkode B Kannan  Iriana Colorado  Rena Feinman  Edwin A Deitch
Institution:Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America.;Pennsylvania State University, United States of America
Abstract:

Background

Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)α and ERβ in modulating the protective response of female rats to T/HS-induced gut and lung injury.

Methods/Principal Findings

The incidence of gut and lung injury was assessed in PE and ovariectomized (OVX) female rats subjected to T/HS or trauma sham shock (T/SS) as well as OVX rats that were administered estradiol (E2) or agonists for ERα or ERβ immediately prior to resuscitation. Marked gut and lung injury was observed in OVX rats subjected to T/HS as compared to PE rats or E2-treated OVX rats subjected to T/HS. Both ERα and ERβ agonists were equally effective in limiting T/HS-induced morphologic villous injury and bacterial translocation, whereas the ERβ agonist was more effective than the ERα agonist in limiting T/HS-induced lung injury as determined by histology, Evan''s blue lung permeability, bronchoalevolar fluid/plasma protein ratio and myeloperoxidase levels. Similarly, treatment with either E2 or the ERβ agonist attenuated the induction of the intestinal iNOS response in OVX rats subjected to T/HS whereas the ERα agonist was only partially protective.

Conclusions/Significance

Our study demonstrates that estrogen attenuates T/HS-induced gut and lung injury and that its protective effects are mediated by the activation of ERα, ERβ or both receptors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号