首页 | 本学科首页   官方微博 | 高级检索  
     


BLM is an early responder to DNA double-strand breaks
Authors:Karmakar Parimal  Seki Masayuki  Kanamori Makoto  Hashiguchi Kazunari  Ohtsuki Makoto  Murata Eriko  Inoue Eri  Tada Shusuke  Lan Li  Yasui Akira  Enomoto Takemi
Affiliation:Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan. pkarmakar_28@yahoo.co.in
Abstract:
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a marked predisposition to cancer and elevated genomic instability. The defective protein in BS, BLM, is a member of the RecQ helicase family and is believed to function in various DNA transactions, including in replication, repair, and recombination. Here, we show that both endogenous and overexpressed human BLM accumulates at sites of laser light-induced DNA double-strand breaks within 10s and colocalizes with gammaH2AX and ATM. Like its RecQ helicase family member, WRN, the defective protein in Werner syndrome, dissection of the BLM protein revealed that its HRDC domain is sufficient for its recruitment to the damaged sites. In addition, we confirmed that the C-terminal region spanning amino acids 1250-1292 within the HRDC domain is necessary for BLM recruitment. To identify additional proteins required for the recruitment of BLM, we examined the recruitment of BLM in various mutants generated from chicken DT40 cells and found that the early accumulation of BLM was not dependent on the presence of ATM, RAD17, DNA-PKcs, NBS1, XRCC3, RAD52, RAD54, or WRN. Thus, HRDC domain in DNA helicases is a common early responder to DNA double-strand breaks, enabling BLM and WRN to be involved in DNA repair.
Keywords:DNA double-strand break repair   BLM protein   RecQ helicase   Laser micro-irradiation   HRDC domain   DT40 cells
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号