首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae
Authors:Guangrong Li  Tao Zhang  Zhihui Yu  Hongjin Wang  Ennian Yang  Zujun Yang
Institution:1. Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731 China

These authors contributed equally to this work.;2. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009 China

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China

These authors contributed equally to this work.;3. Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731 China;4. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China

Abstract:A chromosome-specific painting technique has been developed which combines the most recent approaches of the companion disciplines of molecular cytogenetics and genome research. We developed seven oligonucleotide (oligo) pools derivd from single-copy sequences on chromosomes 1 to 7 of barley (Hordeum vulgare L.) and corresponding collinear regions of wheat (Triticum aestivum L.). The seven groups of pooled oligos comprised between 10 986 and 12 496 45-bp monomers, and these then produced stable fluorescence in situ hybridization (FISH) signals on chromosomes of each linkage group of wheat and barley. The pooled oligo probes were applied to high-throughput karyotyping of the chromosomes of other Triticeae species in the genera Secale, Aegilops, Thinopyrum, and Dasypyrum, and the study also extended to some wheat-alien amphiploids and derived lines. We demonstrated that a complete set of whole-chromosome oligo painting probes facilitated the study of inter-species chromosome homologous relationships and visualized non-homologous chromosomal rearrangements in Triticeae species and some wheat-alien species derivatives. When combined with other non-denaturing FISH procedures using tandem-repeat oligos, the newly developed oligo painting techniques provide an efficient tool for the study of chromosome structure, organization, and evolution among any wild Triticeae species with non-sequenced genomes.
Keywords:chromosome rearrangement  Oligo-FISH  Triticeae species  wheat-barley synteny
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号