首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Donor–Acceptor Shape Matching Drives Performance in Photovoltaics
Authors:Theanne Schiros  Gregor Kladnik  Deborah Prezzi  Andrea Ferretti  Giorgia Olivieri  Albano Cossaro  Luca Floreano  Alberto Verdini  Christine Schenck  Marshall Cox  Alon A Gorodetsky  Kyle Plunkett  Dean Delongchamp  Colin Nuckolls  Alberto Morgante  Dean Cvetko  Ioannis Kymissis
Institution:1. Energy Frontier Research Center, Columbia University, New York, NY 10027;2. Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Slovenia;3. Laboratorio TASC/IOM‐CNR, Area di ricerca, Trieste, Italy;4. Centro S3, CNR‐Istituto Nanoscienze, I‐41125 Modena, Italy;5. Department of Physics, University of Trieste, I‐34123 Trieste, Italy, Laboratorio TASC/IOM‐CNR, Area di ricerca, Trieste, Italy;6. Department of Chemistry, Columbia University, New York, NY 10027;7. Department of Electrical Engineering, Columbia University, New York, NY 10027;8. Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Abstract:While the demonstrated power conversion efficiency of organic photovoltaics (OPVs) now exceeds 10%, new design rules are required to tailor interfaces at the molecular level for optimal exciton dissociation and charge transport in higher efficiency devices. We show that molecular shape‐complementarity between donors and acceptors can drive performance in OPV devices. Using core hole clock (CHC) X‐ray spectroscopy and density functional theory (DFT), we compare the electronic coupling, assembly, and charge transfer rates at the interface between C60 acceptors and flat‐ or contorted‐hexabenzocorone (HBC) donors. The HBC donors have similar optoelectronic properties but differ in molecular contortion and shape matching to the fullerene acceptors. We show that shape‐complementarity drives self‐assembly of an intermixed morphology with a donor/acceptor (D/A) ball‐and‐socket interface, which enables faster electron transfer from HBC to C60. The supramolecular assembly and faster electron transfer rates in the shape complementary heterojunction lead to a larger active volume and enhanced exciton dissociation rate. This work provides fundamental mechanistic insights on the improved efficiency of organic photovoltaic devices that incorporate these concave/convex D/A materials.
Keywords:fullerenes  organic electronics  self‐assemblies  solar cells  supramolecular materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号