Ethanol inhibits ligand-activated Ca2+ channels in human B lymphocytes. |
| |
Authors: | C Brodie J Domenico B D Mazer E W Gelfand |
| |
Affiliation: | Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80224. |
| |
Abstract: | Ethanol reportedly is immunosuppressive, interfering with lymphocyte proliferation. To investigate the basis for this immunosuppression, the effects of acute treatment with ethanol were studied on Ca2+ mobilization in tonsillar B lymphocytes and the human lymphoblastoid B-cell line, Ramos. The level of intracellular Ca2+ was monitored in cells loaded with the fluorescent dye indo-1 following stimulation with either anti-IgM antibody or platelet activating factor. The effect of ethanol was also examined on the induction of the early proto-oncogene c-fos in these cells. Ethanol inhibited ligand-activated Ca2+ mobilization due to transmembrane influx but not intracellular store release, in a dose- and time-dependent manner. This inhibition was not due to the inability of anti-IgM to bind to its surface receptor nor to membrane depolarization induced by ethanol. Ethanol also inhibited the Ca2(+)-dependent induction by anti-IgM of c-fos in these cells. The inhibitory effects of ethanol on ligand-activated Ca2+ channels and subsequent induction of c-fos may provide the basis for its immunosuppressive action. |
| |
Keywords: | |
|
|