首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting protein secondary structure with a nearest-neighbor algorithm.
Authors:S Salzberg  S Cost
Affiliation:Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218.
Abstract:We have developed a new method for protein secondary structure prediction that achieves accuracies as high as 71.0%, the highest value yet reported. The main component of our method is a nearest-neighbor algorithm that uses a more sophisticated treatment of the feature space than standard nearest-neighbor methods. It calculates distance tables that allow it to produce real-valued distances between amino acid residues, and attaches weights to the instances to further modify the the structure of feature space. The algorithm, which is closely related to the memory-based reasoning method of Zhang et al., is simple and easy to train, and has also been applied with excellent results to the problem of identifying DNA promoter sequences.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号