首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

Bottlenose dolphins Tursiops truncatus produce individually distinctive signature whistles. Dolphins recognize the signature whistles of animals with which they share a social bond. Signature whistles develop within the first few months of life and are stable for a lifetime. Vocal learning appears to play a role in the development of signature whistles in bottlenose dolphins. The signature whistles of most female dolphins and about half of male dolphins differ from those of their mothers. Some dolphin calves born in captivity develop a signature whistle that matches either man-made whistles or those of an unrelated dolphin. Dolphins retain the ability as adults to imitate the whistles of animals with which they share strong individual-specific social relationships, bonds which may change throughout their lifetime. The exceptional imitative abilities of dolphin infants and the retention of this ability in adults may be related to the maintenance of changing individual specific social relationships. Individual recognition by the voice may differ in marine vs terrestrial mammals. Diving marine mammals may not be able to rely upon involuntary voice cues for individual recognition, but rather may require vocal learning to maintain a stable signature as their vocal tract changes shape with increasing pressure during a dive.  相似文献   
2.
The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild.  相似文献   
3.
Delphinids produce tonal whistles shaped by vocal learning for acoustic communication. Unlike terrestrial mammals, delphinid sound production is driven by pressurized air within a complex nasal system. It is unclear how fundamental whistle contours can be maintained across a large range of hydrostatic pressures and air sac volumes. Two opposing hypotheses propose that tonal sounds arise either from tissue vibrations or through actual whistle production from vortices stabilized by resonating nasal air volumes. Here, we use a trained bottlenose dolphin whistling in air and in heliox to test these hypotheses. The fundamental frequency contours of stereotyped whistles were unaffected by the higher sound speed in heliox. Therefore, the term whistle is a functional misnomer as dolphins actually do not whistle, but form the fundamental frequency contour of their tonal calls by pneumatically induced tissue vibrations analogous to the operation of vocal folds in terrestrial mammals and the syrinx in birds. This form of tonal sound production by nasal tissue vibrations has probably evolved in delphinids to enable impedance matching to the water, and to maintain tonal signature contours across changes in hydrostatic pressures, air density and relative nasal air volumes during dives.  相似文献   
4.
The function(s) of a particular sound can be explored in detail only if the context of its use is well understood. The behavior of the signaler, and the habitat in which that behavior is observed, are two of the most important components of understanding context specific use of a sound. Bottlenose dolphin foraging behavior is often inferred from relatively few behavioral cues that are visible from the surface. To investigate the use of three specific sound types: echolocation, whistles, and pops during foraging, I recorded sound use by animals engaged in a set of previously defined specific foraging behaviors using a system that allowed me to see animals throughout the water column. Lone foraging animals produced all three sounds at significantly higher rates than animals foraging in groups, and the rate of sound production per animal in multi-animal foraging groups did not vary even as the groups reached up to five individuals. Production of echolocation and pops by lone foraging animals accounted for much of the difference. Foraging dolphins also displayed habitat-specific use of particular sound types. They preferentially produced echolocation and pops in the sand habitat and, at least for lone animals, in the seagrass edge habitat.  相似文献   
5.
6.
Acoustic recordings of two closely related species, spinner dolphin (Stenella longirostris) and pantropical spotted dolphin (Stenella attenuata), were investigated from four different geographic locations: two in the Central Tropical Pacific, one in the Eastern Tropical Pacific and one in the Indian Ocean. The two delphinid species occur in tropical and warm temperate waters, with overlapping ranges. They produce very similar vocalizations, but at the same time their calls exhibit a certain degree of intraspecific variation among different geographic locations as has been observed in other delphinid species. Oscillatory whistles (whistles with at least two oscillations in their frequency contours) were identified and manually extracted from the recordings. Whistles with four or more maxima (oscillations) occurred only in spinner dolphins and they were present in all geographic regions investigated. In addition, the oscillatory whistles with two and three maxima were significantly more frequent in spinner than in spotted dolphins. The differences in oscillatory whistles for these two species seem to be consistent across study areas and therefore, could be used in addition to other whistle features to help distinguish between them.  相似文献   
7.
8.
9.
10.
ABSTRACT

Observations made on the behaviour and sound recordings made of the calls chiefly in the early part of the breeding season in the South Ukraine indicate that the Great Black-headed Gull Larus ichthyaetus has a limited vocal repertoire, producing only eight different types of call associated with various behavioural contexts. Sonagraphic analysis of these sounds shows that their harmonic structure is confused, like that of the calls of L. melanocephalus and L. relictus and unlike the stronger harmonic organisation of the calls of L. argentatus, L. fuscus and L. marinus. Furthermore, there is no signal warning of approaching danger. This acoustic evidence supports the theory that L. ichthyaetus is more closely related to L.relictus and other “primitive hooded” gulls than to L. argentatus and other “large white- headed” gulls of the genus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号