首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有16条查询结果,搜索用时 420 毫秒
1.
Abstract Using the method of compartmental analysis, the ion fluxes and compartment concentrations of Ca2+, K+ and Cl- have been compared in the untreated vegetative frond and the abscisic acid (ABA) induced turion of Spirodela polyrrhiza. The ABA-induced turion is characterized by reduced Ca2+ exchange across the tonoplast and low vacuolar Ca2+ concentration relative to the vegetative frond. In addition the turion exhibits a higher plasmalemma flux with a correspondingly high Ca2+ concentration in the cytoplasm. The concentration of K+ and Cl- is much lower in the cytoplasm of the ABA-induced turion than in the vegetative frond with the influx/efflux ratio at both the plasmalemma and the tonoplast being less than 1, a finding exhibited also in dormant storage tissue. Treatment of vegetative fronds with ABA for 18 h resulted in a reduced K+ plasmalemma efflux relative to untreated vegetative fronds and a concomitant increase in the cytoplasmic concentration. There was no rapid effect of ABA on Ca2+, K+ or Cl- fluxes through either membrane. These results are consistent with the notion that drastic changes in ion fluxes and concentrations in the turion are a secondary consequence of ABA-induced development, possibly due to prior regulation by ABA of enzymes inherent to processes involved in membrane transport.  相似文献   
2.
The aquatic duckweed Spirodela polyrhiza propagates itself vegetatively by forming turions – bud‐like perennation organs – in the autumn, which spend the winter on the bottom of ponds and then germinate in the following spring and proliferate on the water surface. Newly formed turions usually require a period of cold after‐ripening and light to germinate effectively, but an ample supply of exogenous sugar can lead to germination even in the dark and independent of after‐ripening. The results of the present study indicate that the availability of readily metabolised carbohydrates is a determining factor for turion germination. Freshly harvested turions do not contain soluble, low‐molecular weight carbohydrates at a level sufficient to allow germination to take place, but after‐ripened turions do. Augmentation of the soluble carbohydrate content during after‐ripening derives from gradual breakdown of reserve starch of the turions. The long time required for any germination to be observed in turions incubated in darkness and the limited frequency of germination in the dark (about 50% of turion population), even with an ample external sugar, supply emphasise that both after‐ripening and light are essential for ensuring rapid germination and subsequent frond proliferation at an ecologically appropriate time. The carbohydrate supply required for rapid proliferation of the fronds produced at germination is provided by the rapid light‐induced breakdown of turion reserve starch.  相似文献   
3.
Spermidine is the most abundant polyamine in dormant turions of Hydrocharis morsus-ranae and Utricularia intermedia, and it is also the dominant polyamine in sprouts of U. intermedia. The putrescine level is high in young leaves of H. morsus-ranae. Cadaverine and homospermidine occur respectively in vernalized turions of H. morsus-ranae and of U. intermedia.  相似文献   
4.
菹草石芽大小和贮藏温度对萌发及幼苗生长的影响   总被引:1,自引:0,他引:1  
沈佳  许文  石福臣 《植物研究》2008,28(4):477-481
通过萌发实验探讨了菹草石芽重量和贮藏温度对石芽萌发及幼苗生长的影响。结果表明:成熟的菹草石芽大小不一,按鲜重划分重量等级,各等级石芽数量占总数量的百分比差异很大,重量中等的石芽数量占到80%以上;重量对石芽最终萌发率没有影响,但重量小的石芽萌发时间较早,重量大的石芽虽然萌发较晚但是最终萌生的幼苗数目较多。石芽重量和萌发结束时幼苗数目之间呈显著的线性正相关(p<0.05);连续去苗过程中,重量大的石芽萌发率和萌发幼苗数保持较高水平;经过贮藏的石芽与未经贮藏的石芽相比,萌发快且萌发整齐。经过15℃贮藏的石芽萌发最早,高温(25℃)和低温(4℃)贮藏均会使石芽最终萌发出的幼苗数目减少,3种温度下贮藏的石芽最终萌发率和幼苗长度无显著差异。  相似文献   
5.
Hydrilla verticillata (L.f.) Royle produces two types of vegetative propagules, subterranean turions and axillary turions. After 8 or 12 weeks growth under similar conditions, plants grown from subterranean turions weighed 1.7 to 2 times as much as plants grown from axillary turions. Subterranean turion-derived plants produced more propagules (by weight and number) per plant than plants from axillary turions. Characteristics of weight frequency distributions (median, minimum, maximum, and coefficient of variation) for new subterranean turions were also influenced by the type of propagule from which the parent plant was derived. The number of root crowns per plant which reflects the plant's ability to expand horizontally was significantly greater for subterranean turion-derived plants (by 2 times) than for plants from axillary turions. These results support the hypothesis that following colonization of an area the impact ofHydrilla on resident species changes over time.  相似文献   
6.
Abstract The ultrastructural features of the abscisic-acid-induced turion of Spirodela polyrrhiza are briefly described and a comparison between turion and vegetative frond tissue was made by stereological analysis. The turion is characterized by its small size, reniform shape, and dark-brown coloration; the mesophyll is undifferentiated and totally lacking the substantial acrenchyma development found in the vegetative frond. The turion cells have a smaller vacuole and a denser cytoplasm than the cells of the vegetative frond. Stereological analysis showed that the tissues differed quantitatively only in three main respects: air space formation, vacuolation, and starch and cell wall material accumulation. During development, it is suggested that the cells of the turion, while reaching the same final size as the vegetative frond cells, accumulate numerous starch grains, thick cell walls, and large deposits of tannins and anthocyanin pigment at the expense of the vacuolar expansion characteristic of the normal maturity programme. Certain features of the turion ultrastructure indicate a differential cell sensitivity to ABA.  相似文献   
7.
Electrophoretograms of turions of dioecious Hydrilla verticillata (L. f.) Royle, run under non-denaturing conditions, had a major complex protein band at Rf0.45 (7.5% acrylamide). Extracts of monoecious plants under similar conditions had major bands at Rf 0.43 and 0.45. The polypeptides which comprise these bands were partially purified and characterized. The major protein fraction in extracts of dioecious turions had a molecular mass of 58 kDa on gel permeation chromatography. Electrophoresis of this fraction under denaturing conditions in the presence of sodium dodecyl sulfate indicated principal bands with molecular masses of 58 and 57 kDa. Extracts from turions of the monoecious biotype had major bands at 59 and 55 kDa after electrophoresis under denaturing conditions. Antisera were raised against the proteins from the dioecious turion at Rf 0.45 after electrophoresis under non-denaturing conditions. When blots of gels run under non-denaturing conditions were probed with these antisera, a complex band was seen at Rf 0.45 for extracts of the dioecious biotype, while bands were observed at Rf 0.43 and 0.45 for the monoecious extracts. After electrophoresis under denaturing conditions, immunoreactive bands were noted at 58 and 57 kDa or 59 and 55 kDa in extracts of dioecious and monoecious turions, respectively. Extracts of leaves and stems of H. verticillata had detectable amounts of immunoreactive proteins, regardless of photoperiod, hence turion production. Related plants with the aquatic habit had immunoreactive proteins in their leaves and organs of perennation [Elodea canadensis Michx., Elodea nuttallii (Planch.) St. John, and Egeria densa Planch., Potamogeton nodosus Poir. and P. pectinatus L.], but the presence of these proteins was not noted in other plants (Zea mays L., Allium cepa L., Spinacia oleracea L., Lemna gibba L., or Solanum tuberosum L.).  相似文献   
8.
Increased phosphate concentration, higher temperature and addition of glucose all increased the number of fronds and turions of the duckweed Spirodela polyrhiza formed under in vitro conditions. Increasing the number of turions by increasing the plant biomass does not mean that the developmental process (switch of the programme of the primordia from vegetative fronds toward resting turions) has been specifically influenced. The specific turion yield (STY; number of turions formed by one frond) and the time of onset of turion formation have been used as more specific measures of turion induction. At more than 30 µm initial phosphate the STY was increased by lower temperature (15 °C) and became independent of the phosphate concentration. Between 10 and 30 µm and at higher temperatures (25 °C) the STY was increased by lower phosphate levels. The stimulatory effect of lower temperature was more pronounced than that of lower phosphate concentrations. Decreased phosphate concentration highly accelerated the formation of the first turions. The influence of low temperature was small at lower phosphate concentration but became dominant at higher concentrations (especially in autotrophic cultures). Low phosphate levels (e.g. 10 µm ) and low temperatures (e.g. 15 °C) both represent specific turion‐inducing factors having significant interactive effects. In S. polyrhiza, these signals may replace the interactive effects of photoperiods and low temperature known from other hydrophytes in turion induction under natural conditions.  相似文献   
9.
The influence of daily photoperiod (8, 16, 24 h) on eight clones of Spirodela polyrhiza was tested in two different nutrient media. The number of vegetative fronds and resting turions formed after 50 days of cultivation were scored. The specific turion yield (STY; number of turions formed per vegetative frond) was used to evaluate the effectiveness of turion formation of the tested clones. All clones formed turions in both nutrient media. The STY varied substantially between the different clones, ranging from 0.22 +/- 0.03 (clone SC from Cuba) to 3.9 +/- 0.3 (clone 9256 from Finland) in continuous light. The STY increased with increasing duration of the photoperiod. This increase may have been due to the extended period of photosynthesis rather than that of a photoperiodic long-day response. Shorter photoperiods did not stimulate turion formation in any of the clones. S. polyrhiza is a day-neutral plant with respect to turion formation, as noted previously (Appenroth et al. 1990. Annals of Botany 66: 163-168). In accordance with this conclusion, no correlation was detected between the STY and the latitude at which the clones occur naturally. Environmental factors other than shortening of photoperiods seem to be effective in signalling seasonal changes of growth conditions in advance to S. polyrhiza.  相似文献   
10.
Abstract: Turion (survival organ) formation in Spirodela polyrhiza includes a switch in the programming of the primordia from the formation of vegetative fronds toward resting turions. The specific turion yield (SY; number of turions formed by one frond) is used to evaluate the effect of three turion-inducing signals: low phosphate concentration (depleted due to frond growth), low temperature (15 °C) and exogenously applied abscisic acid (1 μM). The formation of turions was observed in the presence of any of the turion-inducing factors in all three clones of S. polyrhiza investigated (clones 9256 from Finland, SJ from Germany and SC from Cuba). The clone SC showed no specific induction by low temperature or phosphate limitation in one nutrient medium. Regardless of the specific signal applied, the SYs were highest in clone 9256 and lowest in clone SC, demonstrating signal-independent clonal differences. Clonal differences are therefore located in the developmental-specific common phase of the transduction chains leading to turion formation. We intend to use clonal differences in the molecular analysis of turion formation, e.g., by cDNA-based amplified fragment length polymorphism, to distinguish signal-specific and developmental-specific gene expression. In contrast, the total turion yield is useful in an ecological context to evaluate the number of turions available to support the survival of a population of plants but gives little information about the physiological process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号