首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   60篇
  国内免费   32篇
  2024年   1篇
  2023年   11篇
  2022年   7篇
  2021年   21篇
  2020年   20篇
  2019年   17篇
  2018年   18篇
  2017年   23篇
  2016年   24篇
  2015年   35篇
  2014年   31篇
  2013年   52篇
  2012年   40篇
  2011年   27篇
  2010年   28篇
  2009年   29篇
  2008年   25篇
  2007年   27篇
  2006年   18篇
  2005年   19篇
  2004年   16篇
  2003年   17篇
  2002年   27篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (325KB)
  2. Download : Download full-size image
  相似文献   
2.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
3.
4.
Summary Telomeric fingerprinting was found to be highly differentiating for Paecilomyces fumosoroseus and Paecilomyces lilacinus isolates in comparison to intron splice site PCR and is therefore a good method for quality control of future products based on these fungi. Although the telomeric restriction length polymorphisms correctly divided the isolates into their appropriate species, further correlation with host range or geographical origin of the isolates was not found. In this respect, intron splice site PCR was more informative taxonomically. The chromosome numbers inferred from telomeric fingerprints were seven chromosomes for P. lilacinus and between six and nine chromosomes for P. fumosoroseus.  相似文献   
5.
6.
In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomeretelomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes.  相似文献   
7.
Herein, we describe a case of an infertile man detected in postnatal diagnosis with FISH characterization and array-CGH used for genome-wide screening which allowed the identification of a complex rearrangement involving sex chromosomes, apparently without severe phenotypic consequences. The deletion detected in our patient has been compared with previously reported cases leading us to propose a hypothetical diagnostic algorithm that would be useful in similar clinical situations, with imperative multi disciplinary approach integrated with genetic counseling. Our patient, uniquely of reproductive age, is one of six reported cases of duplication of Xp22.3 (~ 8.4 Mb) segment and contemporary deletion of Yq (~ 42.9 Mb) with final karyotype as follows:
46,X,der(Y),t(X;Y)(Ypter → Yq11.221::Xp22.33 → Xpter).ish der(Y) (Yptel+,Ycen+,RP11-529I21+,RP11-506M9-Yqtel −,Xptel +). arrXp22.33p22.31(702–8,395,963, 8,408,289x1), Yq11.221q12 (14,569,317x1, 14,587,321–57,440,839x0)  相似文献   
8.
Drosophila telomeres are elongated by the transposition of telomere-specific retrotransposons rather than telomerase activity. Proximal to the terminal transposon array, Drosophila chromosomes contain several kilobases of a complex satellite DNA termed telomere-associated sequences (TASs). Reporter genes inserted into or next to the TAS are silenced through a mechanism called telomere position effect (TPE). TPE is reminiscent of the position effect variegation (PEV) induced by Drosophila constitutive heterochromatin. However, most genes that modulate PEV have no effect on TPE, and systematic searches for TPE modifiers have so far identified only a few dominant suppressors. Surprisingly, only a few of the genes required to prevent telomere fusion have been tested for their effect on TPE. Here, we show that with the exception of the effete (eff; also called UbcD1) mutant alleles, none of the tested mutations at the other telomere fusion genes affects TPE. We also found that mutations in eff, which encodes a class I ubiquitin-conjugating enzyme, act as suppressors of PEV. Thus, eff is one of the rare genes that can modulate both TPE and PEV. Immunolocalization experiments showed that Eff is a major constituent of polytene chromosomes. Eff is enriched at several euchromatic bands and interbands, the TAS regions, and the chromocenter. Our results suggest that Eff associates with different types of chromatin affecting their abilities to regulate gene expression.  相似文献   
9.
The acquisition of massive but localized chromosome translocations, a phenomenon termed chromothripsis, has received widespread attention since its discovery over a year ago. Until recently, chromothripsis was believed to originate from a single catastrophic event, but the molecular mechanisms leading to this event are yet to be uncovered. Because a thorough interpretation of the data are missing, the phenomenon itself has wrongly acquired the status of a mechanism used to justify many kinds of complex rearrangements. Although the assumption that all translocations in chromothripsis originate from a single event has met with criticism, satisfactory explanations for the intense but localized nature of this phenomenon are still missing. Here, we show why the data used to describe massive catastrophic rearrangements are incompatible with a model comprising a single event only and propose a molecular mechanism in which a combination of known cellular pathways accounts for chromothripsis. Instead of a single traumatic event, the protection of undamaged chromosomes by telomeres can limit repetitive breakage-fusion-bridge events to a single chromosome arm. Ultimately, common properties of chromosomal instability, such as aneuploidy and centromere fission, might establish the complex genetic pattern observed in this genomic state.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号