首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   137篇
  2023年   2篇
  2020年   19篇
  2019年   24篇
  2018年   34篇
  2017年   32篇
  2016年   31篇
  2015年   27篇
  2014年   22篇
  2013年   4篇
  2012年   14篇
  2011年   8篇
排序方式: 共有217条查询结果,搜索用时 796 毫秒
1.
Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.  相似文献   
2.
Recent supercapacitors show a high power density with long‐term cycle life time in energy‐powering applications. A supercapacitor based on a single metal electrode accompanying multivalent cations, multiple charging/discharging kinetics, and high electrical conductivity is a promising energy‐storing system that replaces conventionally used oxide and sulfide materials. Here, a hierarchically nanostructured 2D‐Zn metal electrode‐ion supercapacitor (ZIC) is reported which significantly enhances the ion diffusion ability and overall energy storage performance. Those nanostructures can also be successfully plated on various flat‐type and fiber‐type current collectors by a controlled electroplating method. The ZIC exhibits excellent pseudocapacitive performance with a high energy density of 208 W h kg?1 and a power density from 500 W kg?1, which are significantly higher than those of previously reported supercapacitors with oxide and sulfide materials. Furthermore, the fiber‐type ZIC also shows high energy‐storing performance, outstanding mechanical flexibility, and waterproof characteristics, without any significant capacitance degradation during bending tests. These results highlight the promising possibility of nanostructured 2D Zn metal electrodes with the controlled electroplating method for future energy storage applications.  相似文献   
3.
Although 2D Ti3C2Tx is a good candidate for supercapacitors, the restacking of nanosheets hinders the ion transport significantly at high scan rates, especially under practical mass loading (>10 mg cm?2) and thickness (tens of microns). Here, Ti3C2Tx‐NbN hybrid film is designed by self‐assembling Ti3C2Tx with 2D arrays of NbN nanocrystals. Working as an interlayer spacer of Ti3C2Tx, NbN facilitates the ion penetration through its 2D porous structure; even at extremely high scan rates. The hybrid film shows a thickness‐independent rate performance (almost the same rate capabilities from 2 to 20 000 mV s?1) for 3 and 50 µm thick electrodes. Even a 109 µm thick Ti3C2Tx‐NbN electrode shows a better rate performance than 25 µm thick pure Ti3C2Tx electrodes. This method may pave a way to controlling ion transport in electrodes composed of 2D conductive materials, which have potential applications in high‐rate energy storage and beyond.  相似文献   
4.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   
5.
A hybrid supercapacitor with high energy and power densities is reported. It comprises a composite anode of anatase TiO2 and reduced graphene oxide and an activated carbon cathode in a non‐aqueous electrolyte. While intercalation compounds can provide high energy typically at the expense of power, the anatase TiO2 nanoparticles are able to sustain both high energy and power in the hybrid supercapacitor. At a voltage range from 1.0 to 3.0 V, 42 W h kg?1 of energy is achieved at 800 W kg?1. Even at a 4‐s charge/discharge rate, an energy density as high as 8.9 W h kg?1 can be retained. The high energy and power of this hybrid supercapacitor bridges the gap between conventional batteries with high energy and low power and supercapacitors with high power and low energy.  相似文献   
6.
Sandwich‐type microporous hybrid carbon nanosheets (MHCN) consisting of graphene and microporous carbon layers are fabricated using graphene oxides as shape‐directing agent and the in‐situ formed poly(benzoxazine‐co‐resol) as carbon precursor. The reaction and condensation can be readily completed within 45 min. The obtained MHCN has a high density of accessible micropores that reside in the porous carbon with controlled thickness (e.g., 17 nm), a high surface area of 1293 m2 g?1 and a narrow pore size distribution of ca. 0.8 nm. These features allow an easy access, a rapid diffusion and a high loading of charged ions, which outperform the diffusion rate in bulk carbon and are highly efficient for an increased double‐layer capacitance. Meanwhile, the uniform graphene percolating in the interconnected MHCN forms the bulk conductive networks and their electrical conductivity can be up to 120 S m?1 at the graphene percolation threshold of 2.0 wt.%. The best‐practice two‐electrode test demonstrates that the MHCN show a gravimetric capacitance of high up to 103 F g?1 and a good energy density of ca. 22.4 Wh kg?1 at a high current density of 5 A g?1. These advanced properties ensure the MHCN a great promise as an electrode material for supercapacitors.  相似文献   
7.
Silver grids are attractive for replacing indium tin oxide as flexible transparent conductors. This work aims to improve the electrochemical stability of silver‐based transparent conductors. A silver grid/PEDOT:PSS hybrid film with high conductivity and excellent stability is successfully fabricated. Its functionality for flexible electrochromic applications is demonstrated by coating one layer of WO3 nanoparticles on the silver grid/PEDOT:PSS hybrid film. This hybrid structure presents a large optical modulation of 81.9% at 633 nm, fast switching, and high coloration efficiency (124.5 cm2 C?1). More importantly, an excellent electrochemical cycling stability (sustaining 79.1% of their initial transmittance modulation after 1000 cycles) and remarkable mechanical flexibility (optical modulation decay of only 7.5% after 1200 compressive bending cycles) is achieved. A novel smart supercapacitor is presented that functions as a regular energy‐storage device and simultaneously monitors the level of stored energy by a rapid and reversible color variation even at high current charge/discharge conditions. The film sustains an optical modulation of 87.7% and a specific capacitance of 67.2% at 10 A g?1 compared to their initial value at a current density of 1 A g?1. The high‐performance silver grid/PEDOT:PSS hybrid transparent films exhibit promising features for various emerging flexible electronics and optoelectronic devices.  相似文献   
8.
Energy storage devices are arousing increasing interest due to their key role in next‐generation electronics. Integration is widely explored as a general and effective strategy aiming at high performances. Recent progress in integrating a variety of functions into electrochemical energy storage devices is carefully described. Through integration at the level of materials: flexible, stretchable, responsive, and self‐healing devices are discussed to highlight the state‐of‐the‐art multi‐functional electronics. Through the integration at the level of devices, the incorporation of photovoltaic and piezoelectric devices is detailed to reflect the advances in self‐powering electronics. Integrated energy storage devices are presented for wearable applications to indicate a new growth direction. The main challenges and important directions are summarized to offer some useful clues for future development.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号