首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   891篇
  免费   51篇
  国内免费   7篇
  2024年   1篇
  2023年   14篇
  2022年   11篇
  2021年   18篇
  2020年   16篇
  2019年   25篇
  2018年   15篇
  2017年   15篇
  2016年   23篇
  2015年   35篇
  2014年   38篇
  2013年   60篇
  2012年   33篇
  2011年   30篇
  2010年   36篇
  2009年   36篇
  2008年   35篇
  2007年   62篇
  2006年   37篇
  2005年   32篇
  2004年   32篇
  2003年   35篇
  2002年   45篇
  2001年   23篇
  2000年   13篇
  1999年   16篇
  1998年   21篇
  1997年   17篇
  1996年   19篇
  1995年   26篇
  1994年   18篇
  1993年   15篇
  1992年   17篇
  1991年   10篇
  1990年   11篇
  1989年   8篇
  1988年   7篇
  1987年   3篇
  1986年   18篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   3篇
  1973年   3篇
排序方式: 共有949条查询结果,搜索用时 171 毫秒
1.
Sea urchins are model non‐chordate deuterostomes, and studying the nervous system of their embryos can aid in the understanding of the universal mechanisms of neurogenesis. However, despite the long history of sea urchin embryology research, the molecular mechanisms of their neurogenesis have not been well investigated, in part because neurons appear relatively late during embryogenesis. In this study, we used the species Temnopleurus reevesii as a new sea urchin model and investigated the detail of its development and neurogenesis during early embryogenesis. We found that the embryos of T. reevesii were tolerant of high temperatures and could be cultured successfully at 15–30°C during early embryogenesis. At 30°C, the embryos developed rapidly enough that the neurons appeared at just after 24 h. This is faster than the development of other model urchins, such as Hemicentrotus pulcherrimus or Strongylocentrotus purpuratus. In addition, the body of the embryo was highly transparent, allowing the details of the neural network to be easily captured by ordinary epifluorescent and confocal microscopy without any additional treatments. Because of its rapid development and high transparency during embryogenesis, T. reevesii may be a suitable sea urchin model for studying neurogenesis. Moreover, the males and females are easily distinguishable, and the style of early cleavages is intriguingly unusual, suggesting that this sea urchin might be a good candidate for addressing not only neurology but also cell and developmental biology.  相似文献   
2.
We examined the role of phosphatases in synaptic transmission using the permeant phosphatase inhibitor okadaic acid (OA). In the crayfish neuromuscular junction (NMJ), postsynaptic effects including increases in input resistance occurred at doses greater than 5 μM OA. At lower doses (0.5–5 μM) the effects were solely presynaptic and transmitter release increased over three-fold despite small reductions in amplitude and duration of presynaptic action potentials. Potentiating effects of serotonin on transmitter release, Which depend on phosphorylation, were increased by OA. Frequency facilitation was reduced but its decay was not affected. In frog NMJs, OA increased spontaneous and evoked release two-fold through presynaptic mechanisms. An inactive analog of OA, OA tetra-acetate, had no effect on transmitter release at frog and crayfish NMJ. Therefore, phosphatases have a strong modulating influence on synaptic transmission.  相似文献   
3.
Perinatal mortality is high among small-for-gestational age (SGA) piglets and continues to be an economic burden and threat to animal welfare. As the physiological role of serotonin (5-hydroxytryptamine, 5-HT) in perinatal development and gastrointestinal function in the pig remains unknown, the aim of this study was to assess the enteric distribution of 5-HT cells and to determine 5-HT together with its precursor tryptophan in the serum of perinatal normal and SGA piglets. For this purpose, proximal and distal parts of the small intestine (SI) were processed for immunohistochemical analysis to assess the presence of 5-HT endocrine cells. Serum 5-HT was measured with ELISA, whereas its precursor, that is, the free fraction of tryptophan (FFT) together with albumin-bound tryptophan and total tryptophan, were analysed with HPLC in postnatal piglets. In addition, the morphological growth patterns of the different intestinal tissue layers of both normal and SGA piglets were stereologically analysed. The stereological volume density of 5-HT enteroendocrine cells showed a significant interaction effect between age and region. Indeed, the amount of 5-HT cells in both the proximal and distal part of the SI tended to decrease according to age, with the lowest values detected at day 3 postpartum. No differences could be observed related to BW. Interestingly, the serum concentration of 5-HT was higher in normal piglets compared with SGA piglets. Moreover, the ratio of FFT to total tryptophan was significantly affected by age and BW. Normal piglets had, on average, a lower FFT/total tryptophan ratio compared with SGA piglets. An approximate linear decrease was observed with increasing age. Finally, the immaturity of the intestinal system of the SGA piglets was not reflected in altered volume densities of the different intestinal layers. To conclude, although no BW effect could be detected in the distribution of enteric 5-HT cells, serum 5-HT and the ratio of FFT to total tryptophan ratio showed significant differences between normal piglets and their SGA littermates.  相似文献   
4.
Numerous studies have shown that providing straw to pigs can reduce undesirable behaviours such as aggression, tail biting and stereotypy. The measurement of various neuromodulators can be helpful in assessing the development of positive behaviours and overall animal welfare. The oxytocin release is frequently linked to positive emotions and positive welfare. It has been suggested that oxytocin modulates the serotoninergic system. This study aims to investigate the potential effect of straw provision in pigs on peripheral levels of oxytocin and serotonin. In total, 18 mini-pigs were involved in an exploratory study conducted in two parallel groups, Enriched (n=10) and Control (n=8) groups. Pigs were divided by group and housed in pens of two individuals. Straw was provided continuously only in Enriched group and renewed each day for 2 weeks. Two blood samples were drawn from each animal 5 to 10 min before providing the straw, and 15 min after providing straw, during the 1st week, to analyse peripheral changes in oxytocin and serotonin before and after straw provision, and determine the existence of a putative short-term effect. The same procedure was carried out for Control group, without straw provision. Long-term effects of straw provision were also examined using blood samples drawn at the same hour from each animal in the 2nd and 3rd weeks. During this time, animals had the permanent possibility to explore the straw in Enriched group but not in Control group. At the end of each week, one animal-keeper completed two visual analogue scales for each mini-pig regarding the difficulty/ease to work with and handle it and its trust in humans. Results showed peripheral oxytocin increases in both groups after 2 weeks (P=0.02). Results did not demonstrate any effect of providing straw to allow exploratory behaviour on peripheral serotonin. Other results were not significant. This preliminary study explored the relationship between peripheral oxytocin and serotonin and the presence of straw that allow pigs to perform exploratory behaviour, suggesting that there was no relationship between them. Some future studies may include crossing oxytocin and serotonin with other parameters, such as behavioural measures, to obtain more information about the true state of the animal and any possible relationship with pig welfare.  相似文献   
5.
Meta‐analyses evaluating the association between the serotonin transporter polymorphism (5‐HTTLPR) with neuroticism and depression diagnosis as phenotypes have been inconclusive. We examined a gene–environment interaction on a cognitive vulnerability marker of depression, cognitive reactivity (CR) to sad mood. A total of 250 university students of European ancestry were genotyped for the 5‐HTTLPR, including SNP rs25531, a polymorphism of the long allele. Association analysis was performed for neuroticism, CR and depression diagnosis (using a self‐report measure). As an environmental pathogen, self‐reported history of childhood emotional abuse was measured because of its strong relationship with depression. Participants with the homozygous low expressing genotype had high CR if they had experienced childhood emotional maltreatment but low CR if they did not have such experience. This interaction was strongest on the Rumination subscale of the CR measure. The interaction was not significant with neuroticism or depression diagnosis as outcome measures. Our results show that 5‐HTTLPR is related to cognitive vulnerability to depression. Our findings provide evidence for a differential susceptibility genotype rather than a vulnerability genotype, possibly because of the relatively low levels of abuse in our sample. The selection of phenotype and environmental contributor is pivotal in investigating gene–environment interactions in psychiatric disorders.  相似文献   
6.
The somatosensory system in the brain has been widely used for investigating the mechanisms underlying neural circuit formation and developmental neural plasticity. In the primary somatosensory cortex (S1) of rodents, there are discrete cytoarchitectonic units called barrels. Reverse genetic analyses using knockout mice have revealed molecules that control spatial pattern formation of barrels in S1. Glutamatergic receptors such as the NMDA receptor and mGluR5, and molecules related to serotonin such as serotonin transporter and monoamine oxidase A are essential for the formation of barrels. In addition to the mechanisms of spatial pattern formation, those regulating the timing of developmental processes were uncovered recently. Barrels are formed soon after the birth of newborn mouse pups from their mothers, and it was shown that the timing of barrel formation was determined by the timing of the birth of mouse pups. The mechanisms downstream of birth were also examined. It would be intriguing to examine if the mechanisms found using the somatosensory system are applicable to other brain regions.  相似文献   
7.
Due to the clinical and etiological heterogeneity of major depressive disorder, it has been difficult to elucidate its pathophysiology. Current neurobiological theories with the most valid empirical foundation and the highest clinical relevance are reviewed with respect to their strengths and weaknesses. The selected theories are based on studies investigating psychosocial stress and stress hormones, neurotransmitters such as serotonin, norepinephrine, dopamine, glutamate and gamma-aminobutyric acid (GABA), neurocircuitry, neurotrophic factors, and circadian rhythms. Because all theories of depression apply to only some types of depressed patients but not others, and because depressive pathophysiology may vary considerably across the course of illness, the current extant knowledge argues against a unified hypothesis of depression. As a consequence, antidepressant treatments, including psychological and biological approaches, should be tailored for individual patients and disease states. Individual depression hypotheses based on neurobiological knowledge are discussed in terms of their interest to both clinicians in daily practice and clinical researchers developing novel therapies.  相似文献   
8.
《Developmental cell》2023,58(9):727-743.e11
  1. Download : Download high-res image (205KB)
  2. Download : Download full-size image
  相似文献   
9.
The brain architecture in four species of tapeworms from the order Trypanorhyncha has been studied. In all species, the brain consists of paired anterior and lateral lobes, and an unpaired central lobe. The anterior lobes connect by dorsal and ventral semicircular commissures; the central and lateral lobes connect by a median and an X-shaped crisscross commissure. In the center of the brain, five well-developed compact neuropils are present. The brain occupies a medial position in the scolex pars bothrialis. The ventral excretory vessels are situated outside the lateral lobes of the brain; the dorsal excretory vessels are located inside the brain and dorsal to the median commissure. The brain gives rize four anterior proboscis nerves and four posterior bulbar nerves with myelinated giant axons (GAs). The cell bodies of the GAs are located within the X-commissure and in the bulbar nerves. Highly developed serotonergic neuropils are present in the anterior and lateral lobes; numerous 5-HT neurons are found in the brain lobes including the central unpaired lobe. The X-cross commissure consists of the α-tub-immunoreactive and 5-HT-IR neurites. Eight ultrastructural types of neurons were found in the brain of the three species investigated. In addition, different types of synapses were present in the neuropils. Glial cells ensheath the brain lobes, the neuropils, the GAs, and the bulbar nerves. Glia cell processes form complex branching patterns of thin cytoplasmic sheets sandwiched between adjacent neural processes and filling the space between neurons. Multilayer myelin-like envelopes and a mesaxon-like structure have been found in Trypanorhyncha nervous system. We compared the brain architecture of Trypanorhyncha with that of an early basal cestode taxon, that is, Diphyllobothriidea, and present a hypothesis about the homology of the anterior brain lobes in order Trypanorhyncha; and the lateral lobes and median commissure are homologous brain structures within Eucestoda.  相似文献   
10.
Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号