首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
  国内免费   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1999年   2篇
  1997年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1980年   4篇
  1979年   1篇
排序方式: 共有75条查询结果,搜索用时 265 毫秒
1.
When programmed with yeast prepro--factor mRNA, the heterologous reticulocyte/dog pancreas translation system synthesizes two pheromone related polypeptides, a cytosolically located primary translation product (pp--Fcyt, 21 kDa) and a membrane-specific and multiply glycosylated e-factor precursor (pp--F3, 27.5 kDa). Glycosylation of the membrane specific pp--F3 species is competitively inhibited by synthetic peptides containing the consensus sequence Asn-Xaa-Thr as indicated by a shift of its molecular mass from 27.5 kDa to about 19.5 kDa (pp--F0) , whereas the primary translation product pp--Fcyt is not affected. Likewise, only the glycosylated pp--F3 structure is digested by Endo H yielding a polypeptide with a molecular mass between PP--F0 and pp--Fcyt. These observations strongly suggest that the primary translation product is proteolytically processed during/on its translocation into the lumen of the microsomal vesicles. We believe that this proteolytic processing is due to the cleavage of a signal sequence from the pp--Fcyt species, although this interpretation contradicts previous data from other groups. The distinct effect exerted by various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-dNM, 1-deoxymannojirimycin) on the electrophoretic mobility of the pp--F3 polypeptide indicates that its oligosaccharide chains are processed to presumbly Man9-GlcNAc2 structures under thein vitro conditions of translation. This oligosaccharide processing is most likely to involve the action of glucosidase I and glucosidase II as follows from the specificity of the glycosidase inhibitors applied and the differences of the molecular mass observed in their presence. In addition, several arguments suggest that both trimming enzymes are located in the lumen of the microsomal vesicles derived from endoplasmic reticulum membranes.Abbreviations dNM 1-deoxynojirimycin - N-Me-dNM N-methyl-dNM - dMM 1-deoxymannojirimycin - CCCP carbonylcyanide m-chlorophenyl hydrazone  相似文献   
2.
The kinetics of the cellular uptake of iron-transferrin complex was studied in L1210 murine leukemia cells and rat reticulocytes using 125I-transferrin. Saturation of transferrin with iron was necessary for optimal uptake. Following the incubation of cells with the radiolabeled complex a biphasic pattern of uptake was observed. The initial phase was rapid and relatively temperature-independent and was not altered by ethylamine, an inhibitor of transglutaminase activity which is necessary for receptor-mediated endocytosis. This phase was considered to result from receptor-ligand interaction which could be reversed to a great degree by replacement with unlabeled transferrin. A plateau was then reached, indicating a saturation of receptors. After 30 min a second phase of uptake was indicated by the second rise in the curve. This phase was slow, relatively temperature-dependent and could be abolished by ethylamine. It was interpreted as evidence of internalization of the ligand. Analysis of the data from competition studies with unlabeled transferrin indicated that the first phase might itself comprise a reversible and an irreversible step with a ratio of 5 to 1.4 for bound transferrin. Thus, the cellular uptake of iron-transferrin complex may consist of a reversible ligand-receptor interaction. Conformational changes may render this interaction irreversible and the internalization of the ligand may then follow.  相似文献   
3.
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand‐receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in‐situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.  相似文献   
4.
5.
A subcellular fractionation procedure was developed to isolate the different endosomal compartments present during reticulocyte maturation. After reticulocyte lysis and removal of excess haemoglobin by gel chromatography, membrane vesicles were separated over a discontinuous sucrose gradient (10-40%). Two fractions were isolated: P1 at the 25-35% sucrose interface and P2 at the 17-25% sucrose interface. These fractions were morphologically characterized by electron microscopy and the distribution of endocytic markers in the fractions was detected by Western blot. Moreover, this fractionation technique was used to study the effect of 3-methyladenine (3-MA), an autophagy inhibitor, on reticulocyte maturation. The presence of 3-MA during in vitro maturation of reticulocytes induced a decrease in exosome secretion, as measured by the amount of transferrin receptor (TfR) released in the extracellular medium. The subcellular fractionation results suggested that multivesicular endosome formation from early endosomes is the step affected by 3-MA.  相似文献   
6.
Dicistroviridae intergenic region (IGR) internal ribosome entry site(s) (IRES) RNAs drive a cap-independent pathway of translation initiation, recruiting both small and large ribosomal subunits to viral RNA without the use of any canonical translation initiation factors. This ability is conferred by the folded three-dimensional structure of the IRES RNA, which has been solved by X-ray crystallography. Here, we report the chemical probing of Plautia stali intestine virus IGR IRES in the unbound form, in the 40S-subunit-bound form, and in the 80S-ribosome-bound form. The results, when combined with an analysis of crystal structures, suggest that parts of the IRES RNA change structure as the preinitiation complex forms. Using mutagenesis coupled with native gel electrophoresis, preinitiation complex assembly assays, and translation initiation assays, we show that these potentially structurally dynamic elements of the IRES are involved in different steps in the pathway of ribosome recruitment and translation initiation. Like tRNAs, it appears that the IGR IRES undergoes local structural changes that are coordinated with structural changes in the ribosome, and these are critical for the IRES mechanism of action.  相似文献   
7.
In contrast to the species with erythrocytes of high 2,3-bisphosphoglycerate content, in the sheep the concentration of 2,3-bisphosphoglycerate decreases during maturation of reticulocytes. The decrease can be explained by the drop of the phosphofructokinase/pyruvate kinase and 2,3-bisphosphoglycerate synthase/2,3-bisphosphoglycerate phosphatase activity ratios that result from the decline of phosphofructokinase, pyruvate kinase, phosphoglycerate mutase and the bifunctional enzyme 2,3-bisphosphoglycerate synthase/phosphatase. The concentrations of fructose 2,6-bisphosphate and aldohexose 1,6-bisphosphates also decrease during sheep reticulocyte maturation in parallel to the 6-phosphofructo 2-kinase and the glucose 1,6-bisphosphate synthase activities.  相似文献   
8.
As an approach to understand how translation may affect protein folding, we analyzed structural and functional properties of the human estrogen receptor alpha synthesized by different eukaryotic translation systems. A minimum of three conformations of the receptor were detected using limited proteolysis and a sterol ligand-binding assay. The receptor in vitro translated in rabbit reticulocyte lysate was rapidly degraded by protease, produced major bands of about 34 kDa and showed a high affinity for estradiol. In a wheat germ translation system, the receptor was more slowly digested. Two soluble co-existing conformations were evident by different degradation patterns and estradiol binding. Our data show that differences in the translation machinery may result in alternative conformations of the receptor with distinct sterol binding properties. These studies suggest that components of the cellular translation machinery itself might influence the protein folding pathways and the relative abundance of different receptor conformers.  相似文献   
9.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   
10.
The catalytic moiety of Pseudomonas exotoxin A (domain III or PE3) inhibits protein synthesis by ADP-ribosylation of eukaryotic elongation factor 2. PE3 is widely used as a cytocidal payload in receptor-targeted protein toxin conjugates. We have designed and characterized catalytically inactive fragments of PE3 that are capable of structural complementation. We dissected PE3 at an extended loop and fused each fragment to one subunit of a heterospecific coiled coil. In vitro ADP-ribosylation and protein translation assays demonstrate that the resulting fusions—supplied exogenously as genetic elements or purified protein fragments—had no significant catalytic activity or effect on protein synthesis individually but, in combination, catalyzed the ADP-ribosylation of eukaryotic elongation factor 2 and inhibited protein synthesis. Although complementing PE3 fragments are catalytically less efficient than intact PE3 in cell-free systems, co-expression in live cells transfected with transgenes encoding the toxin fusions inhibits protein synthesis and causes cell death comparably as intact PE3. Complementation of split PE3 offers a direct extension of the immunotoxin approach to generate bispecific agents that may be useful to target complex phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号