首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   27篇
  国内免费   10篇
  2023年   7篇
  2022年   6篇
  2021年   15篇
  2020年   15篇
  2019年   38篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   13篇
  2014年   10篇
  2013年   41篇
  2012年   12篇
  2011年   9篇
  2010年   15篇
  2009年   13篇
  2008年   9篇
  2007年   9篇
  2006年   14篇
  2005年   15篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1997年   3篇
  1993年   1篇
  1990年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有298条查询结果,搜索用时 828 毫秒
1.
Protykin is an all-natural, high potency standardized extract of trans-resveratrol (20%) and emodin (10%) derived from the dried rhizome of Polygonum cuspidatum. Previous studies have demonstrated free radical scavenging and anti-inflammatory activities of resveratrol. Since free radicals play a crucial role in the pathogenesis of myocardial ischemia/reperfusion injury, we examined whether Protykin could preserve the heart during ischemic arrest. Sprague—Dawley rats were divided into two groups: experimental group was gavaged Protykin (100 mg/kg body wt) dissolved in corn oil for three weeks, while the control group was gavaged corn oil alone. After three weeks, rats were sacrificed, isolated hearts perfused via working mode, were made globally ischemic for 30 min followed by 2 h of reperfusion. Left ventricular functions were continuously monitored and malonaldehyde (MDA) (presumptive marker for oxidative stress) formation were estimated. At the end of each experiment, myocardial infarct size was measured by TTC staining method. Peroxyl radical scavenging activity of Protykin was determined by examining its ability to remove peroxyl radical generated by 2,2′-azobis (2-amidinopropane) dihydrochloride, while hydroxy radical scavenging activity was tested with its ability to reduce 7-OH·-coumarin-3-carboxylic acid. The results of our study demonstrated that the Protykin group provided cardioprotection as evidenced by improved post-ischemic left ventricular functions (dp, dp/dtmax) and aortic flow as compared to control group. This was further supported by the reduced infarct size in the Protykin group. Formation of MDA was also reduced by Protykin treatment. In vitro studies demonstrated that Protykin possessed potent peroxyl and hydroxyl radical scavenging activities. The results of this study indicate that Protykin can provide cardioprotection, presumably by virtue of its potent free radical scavenging activity.  相似文献   
2.
trans‐Resveratrol (3,5,4′‐trihydroxy‐trans‐stilbene, RES), a naturally occurring polyphenol, has recently attracted increased interest as a health‐beneficial agent. However, based on its p‐substituted phenol structure, RES is expected to be a substrate for tyrosinase and to produce a toxic o‐quinone metabolite. The results of this study demonstrate that the oxidation of RES by tyrosinase produces 4‐(3′,5′‐dihydroxy‐trans‐styrenyl)‐1,2‐benzoquinone (RES‐quinone), which decays rapidly to an oligomeric product (RES‐oligomer). RES‐quinone was identified after reduction to its corresponding catechol, known as piceatannol. RES‐quinone reacts with N‐acetylcysteine, a small thiol, to form a diadduct and a triadduct, which were identified by NMR and MS analyses. The production of a triadduct is not common for o‐quinones, suggesting a high reactivity of RES‐quinone. RES‐quinone also binds to bovine serum albumin through its cysteine residue. RES‐oligomer can oxidize GSH to GSSG, indicating its pro‐oxidant activity. These results suggest that RES could be cytotoxic to melanocytes due to the binding of RES‐quinone to thiol proteins.  相似文献   
3.
4.
Resveratrol (Res) has been reported to be able to improve oocyte vitrification because of its antioxidative properties. The objective of this study was to further assess the positive effect of Res addition on the developmental potential of vitrified mouse oocytes from the perspective of epigenetic alterations. First, 2 μM Res was chosen as the optimal concentration on the basis of its effects on survival and its antioxidative properties. We found that Res addition significantly promoted fertilization (63.8% vs. 42.9%) and blastocyst formation (68.3% vs. 50.2%) after oocyte vitrification. The quality of the derived blastocysts was also higher after Res treatment. Regarding epigenetic aspects, the expression of the important deacetylase SIRT1 was found to decrease significantly upon vitrification, but it was rescued by Res. The abnormal levels of H3K9 acetylation and DNA methylation in vitrified oocytes were restored by Res addition. Moreover, the expression of several imprinted genes was affected by oocyte vitrification. Among them, abnormal Gtl2 and Peg3 expression levels were restored by Res addition. Therefore, the methylation of their imprinted control regions (ICRs) was examined. Surprisingly, the abnormal patterns of Gtl2 and Peg3 methylation in blastocysts developed from vitrified oocytes were both restored by Res addition. Finally, the full‐term embryonic development showed that the birth rate was improved significantly by Res addition (56.2% vs. 38.1%). Collectively, Res was beneficial for the pre‐ and postimplantation embryonic development. Except for the antioxidative activity, Res also played a role in the correction of some abnormal epigenetic modifications caused by oocyte vitrification.  相似文献   
5.
According to our previous results, resveratrol (RSV, 3, 5, 4-trihydroxystilbene), a naturally polyphenolic phytoalexin, could attenuate myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B (VEGF-B) in isolated rat heart or H9c2 cells. However, the molecular mechanism remains unclear. In this study, we investigated the protective effect of RSV on myocardial infarction (MI) in rats and further explored the underlying signal pathway after VEGF-B. Rats received RSV or normal saline by intragastric administration for 7 consecutive days and followed by subcutaneously isoproterenol (ISO) or normal saline injections for another 2 days. We found that RSV pretreatment prevented the unfavourable changes in HW/BW, HW/TL, infarct size, and cell apoptosis in ISO-treated rats. Moreover, superoxide and malondialdehyde (MDA) production were significantly reduced and superoxide dismutase (SOD) was increased by RSV in ISO-treated rats. Furthermore, it showed that RSV pretreatment increased VEGF-B, p-eNOS and p-AMPK expression, and NO production in ISO-treated rats. Using Neonatal Rat Ventricular Myocytes (NRVM), we found that VEGF-B siRNA could abolish the cardio-protective effect of RSV. The enhanced ratios of eNOS phosphorylation to eNOS expression induced by RSV were markedly reversed by VEGF-B siRNA in NRVM also. Meantime, we found that the effect of VEGF-B knock-down on eNOS activation was rescued by AMPK activator AICAR. L-NAME, a NOS inhibitor, could inhibit RSV enhanced eNOS phosphorylation but had no effect on VEGF-B expression in NRVM or in rats. Collectively, our results indicate that RSV exerts cardio-protection from ISO-induced myocardial infarction through VEGF-B/AMPK/eNOS/NO signalling pathway.  相似文献   
6.
In recent years microorganisms have been engineered towards synthesizing interesting plant polyphenols such as flavonoids and stilbenes from glucose. Currently, the low endogenous supply of malonyl-CoA, indispensable for plant polyphenol synthesis, impedes high product titers. Usually, limited malonyl-CoA availability during plant polyphenol production is avoided by supplementing fatty acid synthesis-inhibiting antibiotics such as cerulenin, which are known to increase the intracellular malonyl-CoA pool as a side effect. Motivated by the goal of microbial polyphenol synthesis being independent of such expensive additives, we used rational metabolic engineering approaches to modulate regulation of fatty acid synthesis and flux into the tricarboxylic acid cycle (TCA cycle) in Corynebacterium glutamicum strains capable of flavonoid and stilbene synthesis. Initial experiments showed that sole overexpression of genes coding for the native malonyl-CoA-forming acetyl-CoA carboxylase is not sufficient for increasing polyphenol production in C. glutamicum. Hence, the intracellular acetyl-CoA availability was also increased by reducing the flux into the TCA cycle through reduction of citrate synthase activity. In defined cultivation medium, the constructed C. glutamicum strains accumulated 24 mg·L −1 (0.088 mM) naringenin or 112 mg·L −1 (0.49 mM) resveratrol from glucose without supplementation of phenylpropanoid precursor molecules or any inhibitors of fatty acid synthesis.  相似文献   
7.
8.
9.

[Purpose]

The aim of this study was to compare the effectiveness of either resveratrol supplementation or exercise training on macrophage infiltration and switching from M1 to M2 kupffer cells in high fat diet mice.

[Methods]

C57BL/6 mice were separated into 5 groups: normal diet (ND; n = 6), high-fat diet (HD; n = 6), high-fat diet with resveratrol (HR; n = 6), high-fat diet with exercise (HE; n = 6) or high-fat diet with resveratrol and exercise (HRE; n = 6). Resveratrol supplementation mice were orally gavaged with resveratrol (25mg/kg of body weight) dissolved in 50% propylene glycol. Exercise mice ran on a treadmill at 12-20 m/min for 30-60 min/day, 5 times/week for 12 weeks.

[Results]

After 12 weeks of intervention, the liver was analyzed. F4/80 expression was evaluated by western blot while CD11c and CD163 mRNA expressions were evaluated by RT-PCR. The weights of the body and liver were significantly increased in the HD and HR group compared to the ND group (p < 0.01). However, the weights were most effectively reduced in the HE and HRE groups compared to the HD group (p < 0.05). The macrophage marker, F4/80 expression was significantly lower in the HE and HRE groups compared to the HD group (p < 0.05). mRNA expression of the M1 macrophage marker, CD11c, in the HD group was significantly increased compared to the ND group (p < 0.01). mRNA expression of the M2 macrophage specific marker, CD163, in the HE and HRE groups were significantly increased compared to the HD group (p < 0.05). The mRNA expressions of TLR4, ICAM-1 and VCAM-1, which induce pro-inflammatory cytokine production, were strongly decreased in the HR, HE, and HRE groups compared to the HD group.

[Conclusion]

These results suggest that moderate exercise training inhibits macrophage infiltration and up regulation of CD163 expression. However, resveratrol supplementation is not enough to ameliorate obesity-induced macrophage infiltration and switching.  相似文献   
10.
目的: 研究有氧运动和白藜芦醇对2型糖尿病大鼠肾脏Janus激酶2(JAK2)及转化生长因子-β1(TGF-β1)表达的影响,探讨运动与白藜芦醇改善糖尿病肾损伤的可能作用机制。方法: SD大鼠经5周高糖高脂饲料喂养加腹腔注射链脲佐菌素(STZ)建立糖尿病模型后,将糖尿病大鼠随机分为糖尿病安静组(DC组),糖尿病运动组(DE组),糖尿病药物组(DR组)和糖尿病运动药物组(DER组),每组各12只,另设正常对照组(NC组)。运动组大鼠进行8周的有氧运动(跑速为20 m/min),每天运动60 min,每周运动6 d;药物组大鼠进行8周的白藜芦醇灌胃(每天45 mg/kg,7天/周)。8周末,检测血糖、24 h尿白蛋白(24 h UA)、血肌酐(Scr)、血尿素氮(BUN)的变化;采用荧光定量PCR检测肾脏JAK2 mRNA的表达,免疫组织化学法和Western blot法检测肾脏JAK2和TGF-β1的表达。结果: 8周干预后,与NC组相比, DC组血糖浓度、24 h UA、Scr、BUN均显著上升(P<0.05),肾组织病理损伤加重,肾组织TGF-β1、JAK2和JAK2 mRNA的表达均明显增加(P<0.05)。与DC组相比,DE、DR和DER组血糖浓度、24 h UA、Scr、BUN均显著下降(P<0.05),肾组织病理损伤减轻,肾组织TGF-β1、JAK2和JAK2 mRNA的表达均明显减少(P<0.05),且DER组的降低更显著,与DE、DR组相比差异有显著性(P<0.05)。结论: 有氧运动、白藜芦醇及联合干预可能通过下调肾脏JAK2 mRNA表达,抑制JAK2蛋白的合成,使TGF-β1表达减少,从而改善糖尿病大鼠肾脏损伤的病理性变化。有氧运动联合白藜芦醇干预减轻肾脏病理损伤的效果优于单一的有氧运动或白藜芦醇干预。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号