首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3089篇
  免费   207篇
  国内免费   187篇
  2024年   2篇
  2023年   27篇
  2022年   49篇
  2021年   71篇
  2020年   69篇
  2019年   82篇
  2018年   85篇
  2017年   89篇
  2016年   72篇
  2015年   93篇
  2014年   145篇
  2013年   288篇
  2012年   116篇
  2011年   153篇
  2010年   131篇
  2009年   160篇
  2008年   170篇
  2007年   166篇
  2006年   160篇
  2005年   167篇
  2004年   135篇
  2003年   131篇
  2002年   120篇
  2001年   89篇
  2000年   69篇
  1999年   73篇
  1998年   56篇
  1997年   63篇
  1996年   52篇
  1995年   52篇
  1994年   39篇
  1993年   42篇
  1992年   33篇
  1991年   26篇
  1990年   20篇
  1989年   25篇
  1988年   15篇
  1987年   15篇
  1986年   19篇
  1985年   19篇
  1984年   25篇
  1983年   16篇
  1982年   18篇
  1981年   10篇
  1980年   8篇
  1979年   9篇
  1978年   3篇
  1977年   2篇
  1974年   4篇
排序方式: 共有3483条查询结果,搜索用时 31 毫秒
1.
Serum samples of Meishan (13 animals) and Meishan x Wild Boar crosses (361 animals) were analysed by means of two-dimensional electrophoresis. Some new variants in protease inhibitor systems PO1A, PO1B and PI2 are reported.  相似文献   
2.
Interleukin-1β converting enzyme is the first member of a new class of cysteine proteases. The most distinguishing feature of this family is a nearly absolute specificity for cleavage at aspartic acid. This enzyme has been the subject of intense research because of its role in the production of IL-1β, a key mediator of inflammation. These studies have culminated in the design of potent inhibitors and determination of its crystal structure. The structure secures the relationship of the enzyme to CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans, suggesting that members of this family function in cell death in vertebrates.  相似文献   
3.
4.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   
5.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   
6.
Oxygen concentrations stimulated growth (maximum number of cells) and protease secretion by Tetrahymena thermophila. Agitation and aeration conditions for growth and protease secretion were optimised by a central composite design. The best optimised combination was a stirrer speed of 338 rpm and an aeration of 1 vvm. Journal of Industrial Microbiology & Biotechnology (2000) 25, 58–61. Received 24 September 1999/ Accepted in revised form 06 March 2000  相似文献   
7.
Alcohol-extractable, hydrophobic zein proteins contaminate starch granule surfaces and can be removed by enzymatic digestion with thermolysin. The goal of this research was to find practical alternatives to thermolysin that might be used during the corn wet-milling process. All of the commercial thermostable alkaline proteases studied (SP 709, Neutrase, and Spezyme FAN) removed the zein proteins from various types of cornstarch, as demonstrated by the lack of protein bands below 30 kDa under the reducing conditions of SDS-PAGE gel. Each enzyme removed the zein proteins as effectively as thermolysin removed them. However, the removal of the zein protein did not reduce the quantity of free fatty acids associated with the starch. Journal of Industrial Microbiology & Biotechnology (2000) 24, 71–74. Received 27 May 1999/ Accepted in revised form 01 October 1999  相似文献   
8.
《Endocrine practice》2021,27(12):1225-1231
ObjectiveBone health in older individuals with HIV infection has not been well studied. This study aimed to compare bone mineral density (BMD), trabecular bone score (TBS), and bone markers between HIV-infected men and age- and body mass index (BMI)-matched HIV-uninfected men aged ≥60 years. We investigated the associations of risk factors related to fracture with BMD, TBS, and bone markers in HIV-infected men.MethodsThis cross-sectional study included 45 HIV-infected men receiving antiretroviral therapy and 42 HIV-uninfected men. Medical history, BMD and TBS measurements, and laboratory tests related to bone health were assessed in all the participants. HIV-related factors known to be associated with bone loss were assessed in the HIV-infected men.ResultsThe mean BMD, TBS, and osteopenia or osteoporosis prevalence were similar among the cases and controls. The HIV-infected men had significantly higher mean N-terminal propeptide of type 1 procollagen and C-terminal cross-linking telopeptide of type I collagen levels. Stepwise multiple linear regression analysis demonstrated that low BMI (lumbar spine, P = .015; femoral neck, P = .018; and total hip, P = .005), high C-terminal cross-linking telopeptide of type I collagen concentration (total hip, P = .042; and TBS, P = .010), and low vitamin D supplementation (TBS, P = .035) were independently associated with low BMD and TBS.ConclusionIn older HIV-infected men with a low fracture risk, the mean BMD and TBS were similar to those of the age- and BMI-matched controls. The mean bone marker levels were higher in the HIV group. Traditional risk factors for fracture, including low BMI, high C-terminal cross-linking telopeptide of type I collagen level, and low vitamin D supplementation, were significant predictors of low BMD and TBS.  相似文献   
9.
To understand the possible proteolytic contribution of yeast during cheese ripening, Debaryomyces hansenii 212 was isolated from commercial blue-veined cheese and incubated in a medium containing casein. Growth and casein degradation were recognized at the cheese-ripening temperature. Proteolytic activity was found in the intracellular fraction, and the enzyme, which was attached to the cell wall, primarily acted on β-casein. The cytosol contained more than 90% of the total proteolytic activity which was responsible for the degradation of both αs- and β-casein. These results suggest that the contribution of yeast to cheese ripening would depend on the susceptibility to cell lysis in addition to its proteolytic activity.  相似文献   
10.
Mitochondria contribute significantly to the cellular production of ROS. The deleterious effects of increased ROS levels have been implicated in a wide variety of pathological reactions. Apart from a direct detoxification of ROS molecules, protein quality control mechanisms are thought to protect protein functions in the presence of elevated ROS levels. The reactivities of molecular chaperones and proteases remove damaged polypeptides, maintaining enzyme activities, thereby contributing to cellular survival both under normal and stress conditions. We characterized the impact of oxidative stress on mitochondrial protein homeostasis by performing a proteomic analysis of isolated yeast mitochondria, determining the changes in protein abundance after ROS treatments. We identified a set of mitochondrial proteins as substrates of ROS‐dependent proteolysis. Enzymes containing oxidation‐sensitive prosthetic groups like iron/sulfur clusters represented major targets of stress‐dependent degradation. We found that several proteins involved in ROS detoxification were also affected. We identified the ATP‐dependent protease Pim1/LON as a major factor in the degradation of ROS‐modified soluble polypeptides localized in the matrix compartment. As Pim1/LON expression was induced significantly under ROS treatment, we propose that this protease system performs a crucial protective function under oxidative stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号