首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2021年   2篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 484 毫秒
1
1.
2.
Long-term dispersal ability is a key species’ trait constraining species ranges and thus large-scale biodiversity patterns. Here we infer the long-term dispersal abilities of three Geomalacus (Gastropoda, Pulmonata) species from their range-wide genetic–spatial distance relationships. This approach follows recent advances in statistical modelling of the analogous pattern at the community level: the distance decay in assemblage similarity. While linear relationships are expected for species with high long-term dispersal abilities, asymptotic relationships are expected for those with more restricted mobility. We evaluated three functional forms (linear, negative exponential and power-law) for the relationship between genetic distance (computed from mitochondrial cox1 sequences, n = 701) and spatial distance. Range fragmentation at present time and at the Last Glacial Maximum was also estimated based on the projection of climatic niches. The power-law function best fit the relationship between genetic and spatial distances, suggesting strong dispersal limitation and long-term population isolation in all three species. However, the differences in slope and explained variance pointed to disparities in dispersal ability among these weak dispersers. Phylogeographic patterns of Geomalacus species are thus largely driven by the same major process (i.e. dispersal limitation), operating at different strengths. This strong dispersal limitation results in geographic clustering of genetic diversity that makes these species highly vulnerable to genetic erosion due to climate change.  相似文献   
3.
The epidemic dynamics of infectious diseases vary among cities, but it is unclear how this is caused by patterns of infectious contact among individuals. Here, we ask whether systematic differences in human mobility patterns are sufficient to cause inter-city variation in epidemic dynamics for infectious diseases spread by casual contact between hosts. We analyse census data on the mobility patterns of every full-time worker in 48 Canadian cities, finding a power-law relationship between population size and the level of organization in mobility patterns, where in larger cities, a greater fraction of workers travel to work in a few focal locations. Similarly sized cities also vary in the level of organization in their mobility patterns, equivalent on average to the variation expected from a 2.64-fold change in population size. Systematic variation in mobility patterns is sufficient to cause significant differences among cities in infectious disease dynamics—even among cities of the same size—according to an individual-based model of airborne pathogen transmission parametrized with the mobility data. This suggests that differences among cities in host contact patterns are sufficient to drive differences in infectious disease dynamics and provides a framework for testing the effects of host mobility patterns in city-level disease data.  相似文献   
4.
The relationships between the concentration of metal in the growth medium, Cs, the concentration of metal absorbed by the plant, Cp, and the total biomass achieved, M, all of which are factors relevant to the efficiency of metal uptake and tolerance by the plant, have been investigated via the physiological response of Brassica juncea seedlings to Ni stress. The factorial growth experiments treated the Ni concentration in agar medium and the diurnal light quanta as independently variable parameters. Observations included the evidence of light enhancement of Ni toxicity in the root, as well as at the whole-plant level. The shoot mass index possibly is an indicator of the amount of shoot metal sequestration in B. juncea, as are the logarithmic variation of Cp with Cs and the power-law dependence of M on Cp. The sum total of these observations indicates that, for the Ni accumulating plant B. juncea, the overall metabolic allocation to either growth or metal tolerance of the plant is important. Neither a rapid biomass increase nor a high metal absorbed concentration favored the removal of high metal mass from the medium. Rather, the plants with a moderate rate of biomass growth and a moderate absorbed metal concentration demonstrated the ability to remove the maximum mass of metal from the medium. The implication of these results as related to the extant model of phyoextraction efficiency is discussed.  相似文献   
5.
Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population''s mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely—or at least for a long time—even in a constant environment.  相似文献   
6.
Complex spatial patterns are common in coastal marine systems, but mechanisms underlying their formation are disputed. Most empirical work has focused on exogenous spatially structured disturbances as the leading cause of pattern formation in species assemblages. However, theoretical and observational studies suggest that complex spatial patterns, such as power laws in gap-size distribution, may result from endogenous self-organized processes involving local-scale interactions. The lack of studies simultaneously assessing the influence of spatially variable disturbances and local-scale interactions has fuelled the idea that exogenous and endogenous processes are mutually exclusive explanations of spatial patterns in marine ecosystems. To assess the relative contribution of endogenous and exogenous processes in the emergence of spatial patterns, an intertidal assemblage of algae was exposed for two years to various combinations of intensity and spatial patterns of disturbance. Localized disturbances impinging at the margins of previously disturbed clearings and homogenous disturbances without any spatial pattern generated heterogeneous distributions of disturbed gaps and macroalgal patches, characterized by a power-law scaling. Spatially varying disturbances produced a spatial gradient in the distribution of algal patches and, to a lesser extent, also a power-law scaling in both patch- and gap-size distributions. These results suggest that exogenous and endogenous processes are not mutually exclusive forces that can lead to the formation of similar spatial patterns in species assemblages.  相似文献   
7.
Large-scale features of the spatial arrangement of protein-coding segments (PCS) are investigated by means of the inter-PCS spacers' size distributions, which have been found to follow power-laws. Linearity in double-logarithmic scale extends to several orders of magnitude in the genomes of organisms as disparate as mammals, insects and plants. This feature is also present in the most compact eukaryotic genomes and in half of the examined bacteria, despite their very limited non-coding space. We have tried to determine the sequence of events in the course of genomes' evolution which may account for the formation of the observed size distributions. The proposed mechanism essentially includes two types of events: (i) segmental duplications (and possibly paleopolyploidy), and (ii) the subsequent loss of most of the duplicated genes. It is shown by computer simulations that the formulated scenario generates power-law-like inter-PCS spacers' size distributions, which remain robust for a variety of parameter choices, even if insertion of external sequences, such as viruses or proliferating retroelements is included. Moreover, power-laws are preserved after most of the non-coding DNA has been removed, thus explaining the finding of this pattern in genomes as compact as that of Takifugu rubripes.  相似文献   
8.
9.
Simple temporal models for ecological systems with complex spatial patterns   总被引:1,自引:1,他引:0  
Spatial patterns are ubiquitous in nature. Because these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales, their effects must be incorporated in temporal ecological models that do not represent space explicitly. We demonstrate a connection between a simple parameterization of spatial effects and the geometry of clusters in an individual‐based predator–prey model that is both nonlinear and stochastic. Specifically we show that clusters exhibit a power‐law scaling of perimeter to area with an exponent close to unity. In systems with a high degree of patchiness, similar power‐law scalings can provide a basis for applying simple temporal models that assume well‐mixed conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号