首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  2023年   2篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
  1996年   1篇
  1991年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有48条查询结果,搜索用时 59 毫秒
1.
Aim Beringia, far north‐eastern Siberia and north‐western North America, was largely unglaciated during the Pleistocene. Although this region has long been considered an ice‐age refugium for arctic herbs and shrubs, little is known about its role as a refugium for boreal trees and shrubs during the last glacial maximum (LGM, c. 28,000–15,000 calibrated years before present). We examine mapped patterns of pollen percentages to infer whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, Alnus/Duschekia) survived the harsh glacial conditions within Beringia. Methods Extensive networks of pollen records have the potential to reveal distinctive temporal–spatial patterns that discriminate between local‐ and long‐distance sources of pollen. We assembled pollen records for 149 lake, peat and alluvial sites from the Palaeoenvironmental Arctic Sciences database, plotting pollen percentages at 1000‐year time intervals from 21,000 to 6000 calibrated years before present. Pollen percentages are interpreted with an understanding of modern pollen representation and potential sources of long‐distance pollen during the glacial maximum. Inferences from pollen data are supplemented by published radiocarbon dates of identified macrofossils, where available. Results Pollen maps for individual taxa show unique temporal‐spatial patterns, but the data for each taxon argue more strongly for survival within Beringia than for immigration from outside regions. The first increase of Populus pollen percentages in the western Brooks Ranges is evidence that Populus trees survived the LGM in central Beringia. Both pollen and macrofossil evidence support Larix survival in western Beringia (WB), but data for Larix in eastern Beringia (EB) are unclear. Given the similar distances of WB and EB to glacial‐age boreal forests in temperate latitudes of Asia and North America, the widespread presence of Picea pollen in EB and Pinus pollen in WB indicates that Picea and Pinus survived within these respective regions. Betula pollen is broadly distributed but highly variable in glacial‐maximum samples, suggesting that Betula trees or shrubs survived in restricted populations throughout Beringia. Alnus/Duschekia percentages show complex patterns, but generally support a glacial refugium in WB. Main conclusions Our interpretations have several implications, including: (1) the rapid post‐glacial migration rate reported for Picea in western Canada may be over estimated, (2) the expansion of trees and shrubs within Beringia should have been nearly contemporaneous with climatic change, (3) boreal trees and shrubs are capable of surviving long periods in relatively small populations (at the lower limit of detection in pollen data) and (4) long‐distance migration may not have been the predominant mode of vegetation response to climatic change in Beringia.  相似文献   
2.
Background: Range expansion often results in colonisation bottlenecks that should both deplete genetic diversity and increase genetic differentiation towards the margins of a species' geographic distribution.

Aims: We tested whether genetic differentiation increased among populations of the annual plant Mercurialis annua after its colonisation of the Iberian Peninsula from Morocco. Previous work showed that this colonisation resulted in a decrease of phenotypic and genetic diversity from the core in North Africa towards the distribution margins of M. annua in north-eastern and north-western Spain.

Methods: Seeds were sampled from 20 populations located across the hexaploid range of M. annua. Patterns of phenotypic and genetic differentiation among experimentally grown populations were analysed and compared between the Iberian Peninsula and North Africa.

Results: The level of phenotypic and genetic differentiation among populations in the expanded range of the Iberian Peninsula was similar to that in the core range in North Africa.

Conclusions: Our findings imply that the observed effects of range expansion on genetic differentiation may be independent of the effects on genetic diversity. They point to the importance of taking both historic and contemporary processes of migration into account when predicting the results of range expansion.  相似文献   
3.
Aim We examined the genetic structure of Quercus garryana to infer post‐glacial patterns of seed dispersal and pollen flow to test the hypotheses that (1) peripheral populations are genetically distinct from core populations and from one another; (2) genetic diversity declines towards the poleward edge of the species’ range; and (3) genetic diversity in the chloroplast genome, a direct measure of seed dispersal patterns, declines more sharply with increasing latitude than diversity in the nuclear genome. We address our findings in the context of known historical oak distribution from pollen core data derived from previously published research. Location Oak–savanna ecosystems from southern Oregon, USA (core populations/non‐glaciated range) northward to Vancouver Island, British Columbia, Canada (peripheral populations/glaciated range). Methods We genotyped 378 trees from 22 sites with five chloroplast and seven nuclear microsatellite loci. For both sets of markers, we estimated genetic diversity and differentiation using an analysis of molecular variance and generated Mantel correlograms to detect genetic and geographical distance correlations. For the nuclear markers, we also used a Bayesian approach to infer population substructure. Results There was a large degree of population differentiation revealed by six chloroplast haplotypes, with little (≤ 3) or no haplotype diversity within sites. Peripheral island locations shared the same, maternally inherited chloroplast haplotype, whereas locations in mainland Washington had greater haplotype diversity. In contrast, genetic diversity of the nuclear markers was high at all locations sampled. Populations clustered into two groups and were significantly positively correlated over large spatial scales (≤ 200 km), although allele richness decreased significantly with latitude. Population substructure was observed between core and peripheral populations because rare alleles were absent in peripheral localities and common allele frequencies differed. Main conclusions The observed pattern of chloroplast haplotype loss at the northern periphery suggests restricted seed dispersal events from mainland sites to peripheral islands. This pattern was unexpected, however, as refugial oak populations remained near the current post‐glacial range even during the Last Glacial Maximum. Using nuclear markers, we found high within‐population diversity and population differentiation only over large spatial scales, suggesting that pollen flow is relatively high among populations.  相似文献   
4.
5.
Aim This study furthers the documentation of the geographical distribution of two divergent (c. 3%) mitochondrial DNA clades in the threespine stickleback (Gasterosteus aculeatus) and tests the hypotheses that the northeastern Pacific distribution has been influenced by post‐glacial colonization and lake elevation and that clade identity is associated with certain morphological attributes such as reduction in body armour. Location Lakes and nearshore marine environments of the eastern Pacific Basin from southcentral Alaska to southeastern British Columbia, (BC) Canada. Methods Restriction enzyme analysis of polymerase chain reaction‐amplified mitochondrial DNA fragments (cytochrome b) from a total of 45 new populations combined with existing data for a further 45 populations. Lake elevation data were collected for 78 localities and tested for an association with mtDNA clade by contingency table analyses. Morphological data were collected on sticklebacks from eight samples representing four lake‐stream systems and tested for differentiation among populations with different mtDNA clade identities using analyses of variance. Results We extend the known distribution of the haplotypes diagnostic of the Trans‐North Pacific Clade (TNPC) southward to mid‐Vancouver Island and, for the first time, on mainland BC, in other island populations far from putative refugia, and in nearby anadromous populations. A morphological analysis indicated that the mainland population with the TNPC was not characterized by reduced spine or lateral plate (‘armour’) traits that characterize some putative relict populations on the Queen Charlotte Islands. We found a significant association between lake elevation and the presence of the TNPC; the TNPC was present more often in lakes located at or lower than 42 m than in higher elevation lakes. Main conclusions Our data support the hypothesis that post‐glacial colonization by TNPC‐bearing marine sticklebacks and aspects of lake ‘accessibility’ were important in determining the distribution of mtDNA clades in the eastern Pacific Ocean basin. More generally, our study demonstrates how processes acting both across immense geographic scales (e.g. pan‐Pacific dispersal) and local scales (lake accessibility contingent on timing and extent of isostatic rebound) may interact to explain biogeographical patterns.  相似文献   
6.
Background: Heathlands are relatively abundant in the landscape of the western Mediterranean region, especially in the Strait of Gibraltar region, where it is locally known as herriza. They are associated with a mild Mediterranean climate regime and with acid, nutrient-poor soils. They harbour a high plant diversity, often viewed as a consequence of the transition between European Atlantic heathland and Mediterranean sclerophyllous shrubland floras.

Aims: To determine whether species-rich Mediterranean heathlands, including the herriza, constitute distinct heathland formations rather than transitional vegetation units between Atlantic heathlands and Mediterranean garrigue shrublands.

Methods: We quantified species richness, endemism and analysed the β-diversity of the woody component of Mediterranean heathland communities throughout its geographic range, with special emphasis on the Strait of Gibraltar region.

Results: Mediterranean heathlands, including the herriza, are not transitional communities between Atlantic heathlands and Mediterranean shrublands. Woody species richness and, particularly, endemic richness was the highest in the herriza.

Conclusions: The high biodiversity values of the herriza are a likely consequence of the ecological singularity of the Strait of Gibraltar region and its known role as a glacial refugium. Despite its treeless feature, the herriza deserves special recognition and protection from both in its European and North African extension.  相似文献   

7.
The distinct distribution of the west European hedgehog Erinaceus europaeus and the northern white-breasted hedgehog Erinaceus roumanicus and their separate refugial origins after the Pleistocene is a well-known example in the zoogeography of the Holarctic. Among the Late Quaternary faunal assemblages, the west European hedgehog is recorded at 269 sites whereas the northern white-breasted hedgehog is recorded only at 52 sites in Europe. The distribution patterns of the temporal and spatial Glacial records of the west European hedgehog show a general trend: a strong restriction to glacial refugia (the Iberian and Italian Peninsulas) during the Weichselian Glacial until the end of the Last Glacial Maximum, and a colonization of southern France during the early Late Glacial between 14 000 and 125 00 14C years BP (15 000–12 800 cal. BC). Whereas the British Isles could have already been colonised by the end of the Pre-Boreal, in the rest of Central Europe E. europaeus was clearly distributed there in the Boreal for the first time. The west European hedgehog is an absolute Holocene faunal element in Central Europe. It appears in most parts of Central Europe during the Early Holocene, when the west European hedgehog met its eastern relative, which probably was similarly sensitive. After meeting each other, the distribution limit of both Erinaceus species in Central Europe seems to have been relatively constant in its geographic extent. Because of the clear climatic correlation, E. europaeus should be considered as an indicator species for temperate climatic conditions of the Holocene fauna. This should be considered during the reconstruction of climatic conditions with the help of the analysis of quaternary faunal material.  相似文献   
8.
A purified mitochondrial DNA (mtDNA) probe was used to examine restriction fragment length polymorphisms produced by six restriction enzymes ( Xba I, Eco RV, Ava II, Hinf I, Hae III, Mbo I) in 915 brown trout from western Europe. A total of 20 composite haplotypes were found with one to seven haplotypes in individual populations. Icelandic trout samples from north, south, east, and west coast drainages showed only a single common haplotype in contrast to the high level of polymorphism found in Irish and Scottish populations. The phylogeny of mtDNA haplotypes and the pattern of haplotype distribution suggests that post-glacial colonization of brown trout in NW Europe was more complex than the dual colonization model which has been proposed on the basis of differential LDH-5* allele distribution. For example, Lough Melvin (Ireland) appears to have been independently  相似文献   
9.
The focus of this study is to present bumblebee fauna of Arkhangelsk Region (north-western Russia). This research is based on the museum collections and materials collected by the authors. Collecting localities and data of faunistic records are given in the species list. We include 34 species in the fauna of bumblebees of Arkhangelsk Region. The regional fauna is dominated by Transpalaearctic species. Bumblebee fauna in the study region has low specificity. The recent distribution of bumblebee species in the study region is a result of post-glacial immigration.  相似文献   
10.
Approximately 20 000 years ago the last glacial maximum (LGM) radically altered the distributions of many Northern Hemisphere terrestrial organisms. Fewer studies describing the biogeographic responses of marine species to the LGM have been conducted, but existing genetic data from coastal marine species indicate that fewer taxa show clear signatures of post-LGM recolonization. We have assembled a mitochondrial DNA (mtDNA) data set for 14 co-distributed northeastern Pacific rocky-shore species from four phyla by combining new sequences from ten species with previously published sequences from eight species. Nuclear sequences from four species were retrieved from GenBank, plus we gathered new elongation factor 1-α sequences from the barnacle Balanus glandula . Results from demographic analyses of mtDNA for five (36%) species ( Evasterias troschelii, Pisaster ochraceus, Littorina sitkana, L. scutulata, Xiphister mucosus ) were consistent with large population expansions occurring near the LGM, a pattern expected if these species recently recolonized the region. However, seven (50%) species ( Mytilus trossulus, M. californianus, B. glandula, S. cariosus, Patiria miniata, Katharina tunicata , X. atropurpureus ) exhibited histories consistent with long-term stability in effective population size, a pattern indicative of regional persistence during the LGM. Two species of Nucella with significant mtDNA genetic structure showed spatially variable demographic histories. Multilocus analyses for five species were largely consistent with mtDNA: the majority of multilocus interpopulation divergence times significantly exceeded the LGM. Our results indicate that the LGM did not extirpate the majority of species in the northeastern Pacific; instead, regional persistence during the LGM appears a common biogeographic history for rocky-shore organisms in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号