首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
  2020年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Plant myxodiasporous species have the ability to release a polysaccharidic mucilage upon imbibition of the seed (myxospermy) or the fruit (myxocarpy). This is a widespread capacity in angiosperms providing multiple ecological functions including higher germination efficiency under environmental stresses. It is unclear whether myxodiaspory has one or multiple evolutionary origins and why it was supposedly lost in several species. Here, we summarize recent advances on three main aspects of myxodiaspory. (a) It represents a combination of highly diverse traits at different levels of observation, ranging from the dual tissular origin of mucilage secretory cells to diverse mucilage polysaccharidic composition and ultrastructural organization. (b) An asymmetrical selection pressure is exerted on myxospermy-related genes that were first identified in Arabidopsis thaliana. The A. thaliana and the flax intra-species mucilage variants show that myxospermy is a fast-evolving trait due to high polymorphism in a few genes directly acting on mucilage establishment. In A. thaliana, these actors are downstream of a master regulatory complex and an original phylogenetic overview provided here illustrates that this complex has sequentially evolved after the common ancestor of seed plants and was fully established in the common ancestor of the rosid clade. (c) Newly identified myxodiaspory ecological functions indicate new perspectives such as soil microorganism control and plant establishment support.  相似文献   
2.
Diaspores of many plant species inhabiting open vegetation in semi‐arid environments secrete mucilage after wetting (myxospermy) that glues the diaspores to the ground and prevents movement when the mucilage dries. In the present study, we test whether mucilage secretion can be considered as a selective response to soil erosion in plant species inhabiting semi‐arid environments. We relate the amount and type of mucilage secretion by seeds of Helianthemum violaceum and Fumana ericifolia (Cistaceae) to the number of raindrop impacts needed to remove these seeds after gluing them with their own mucilage to the ground and also the time that these seeds resist water run‐off without detaching. We also compare the amount of seed mucilage production by plants growing in habitats without erosion and plants affected by severe erosion by fitting mixed effect models. Our results show an important phenotypic variation in the amount of mucilage secretion in both species, although it is suggested that the effect of mucilage secretion in the rate of seed removal by erosion is species‐ and mechanism‐dependent. For F. ericifolia, the amount of mucilage secreted by the seeds is directly proportional to their resistance to raindrop impacts and is positively related to the intensity of the erosive processes that the plants experience. Nevertheless, all the seeds resist the force of run‐off during 60 min, irrespective of the amount of mucilage they produce. In H. violaceum, mucilage secretion per se, and not the amount of mucilage produced by the seeds, has an effect on the rate of seed removal by erosive processes. Furthermore, cellulosic fibrils were found only in the mucilage of F. ericifolia but not in H. violaceum. Overall, our results only partially support the hypothesis that a selective response to soil erosion exists. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 241–251.  相似文献   
3.

Background and Aims

The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd''s purse.

Methods

Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy.

Key Results

Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds.

Conclusions

In shepherd''s purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.  相似文献   
4.
粘液繁殖体种子的粘液质形成、分泌及释放相关基因   总被引:2,自引:0,他引:2  
种皮粘液质是在种皮外层细胞的高尔基体内产生并分泌到胞腔内或细胞壁层的一种果胶类多糖物质.当干燥种子遇水后,粘液质即刻被释放形成透明胶质并完全包被整个种子.粘液质对种子的扩散定居、种子萌发以及幼苗的存活和生长均具有重要作用.粘液质作为一种模型研究细胞壁的产生及其形成的分子机制已经成为植物种皮发育与环境变化相适应关系的研究...  相似文献   
5.

Background and Aims

Myxospermy is a term which describes the ability of a seed to produce mucilage upon hydration. The mucilage is mainly comprised of plant cell-wall polysaccharides which are deposited during development of those cells that comprise the seed coat (testa). Myxospermy is more prevalent among those plant species adapted to surviving on arid sandy soils, though its significance in determining the ecological fitness of plants is unclear. In this study, the first mathematical model of myxospermous seed mucilage expansion is presented based on seeds of the model plant species Capsella bursa-pastoris (shepherd''s purse).

Methods

The structures underpinning the expansion process were described using light, electron and time-lapse confocal micrographs. The data and experimental observations were used to create a mathematical model of myxospermous seed mucilage expansion based on diffusion equations.

Key Results

The mucilage expansion was rapid, taking 5 s, during which the cell mucilage volume increased 75-fold. At the level of the seed, this represented a 6-fold increase in seed volume and a 2·5-fold increase in seed surface area. These increases were shown to be a function of water uptake (16 g water g−1 mucilage dry weight), and relaxation of the polymers which comprised the mucilage. In addition, the osmotic pressure of the seed mucilage, estimated by assessing the mucilage expansion of seeds hydrated in solutions of varying osmotic pressure, was –0·54 MPa (equivalent to 0·11 m or 6·6 g L−1 NaCl).

Conclusions

The results showed that the mucilage may be characterized as hydrogel and seed-mucilage expansion may be modelled using the diffusion equation described. The potential of myxospermous seeds to affect the ecological services provided by soil is discussed briefly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号