首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   7篇
  国内免费   3篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   10篇
  2012年   3篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有93条查询结果,搜索用时 46 毫秒
1.
Donor scarcity precludes the use of pancreatic transplantation to treat type I diabetes. Xenogeneic islet transplantation offers the possibility of overcoming this problem; however, it entails the use of immunoisolation devices to prevent immune rejection of the transplanted islets. These devices consist of a semipermeable membrane, which surrounds the islets and isolates them from the host's immune system, while allowing the passage of insulin and essential nutrients, including glucose. Problems associated with proposed device designs include diffusion limitations, biocompatibility, device retrieval in the event of failure, and mechanical integrity. Microencapsulation appears to be the most promising system of immunoisolation, however, the design of a device suitable for human clinical use remains a challenge. (c) 1994 John Wiley & Sons, Inc.  相似文献   
2.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37°C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   
3.
Biofertilizers, namely Rhizobium and biocontrol agents such as Pseudomonas and Trichoderma have been well established in the field of agricultural practices for many decades. Nevertheless, research is still going on in the field of inoculant production to find methods to improve advanced formulation and application in fields. Conventionally used solid and liquid formulations encompass several problems with respect to the low viability of microorganisms during storage and field application. There is also lack of knowledge regarding the best carrier in conventional formulations. Immobilization of microorganisms however improves their shelf-life and field efficacy. In this context, microencapsulation is an advanced technology which has the possibility to overcome the drawbacks of other formulations, results in extended shelf-life, and controlled microbial release from formulations enhancing their application efficacy. This review discusses different microencapsulation technologies including the production strategies and application thereof in agricultural practices.  相似文献   
4.
Solvent extraction (or evaporation from a W(1)/O/W(2)-dispersion), coacervation, and spray drying methods are commonly employed to encapsulate protein drugs in polymeric microparticles for sustained delivery applications. To overcome the limitations of these methods, a novel electrospray method was developed to encapsulate a model protein drug-bovine serum albumin (BSA) in biodegradable polymeric microparticles and examine the feasibility of the process in not denaturing the protein. Microparticles of approximately 20 microm diameter with corrugated surfaces and smooth surfaces were observed by scanning electron microscope. Confocal laser scanning microscope images showed that BSA was distributed evenly in microparticles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was employed to investigate the protein integrity of BSA released from the polymer matrix after 38 days. No protein degradation was observed during the 38 days release. The secondary structure of released BSA was characterized by Fourier transform infrared (FTIR) and circular dichroism (CD), which suggested that the released BSA was almost identical to native BSA. The encapsulation efficiency could reach 76% by adjusting the amount of the additive Pluronic F127 and processing parameters. The release profile could be tailored by the fabrication process and the sustained release of BSA could endure for more than 1 month. More than 80% of the bioactivity of BSA (evaluated by BSA ELISA kit) could be maintained after releasing from polymer matrix. Findings of the present study demonstrate that this novel electrospray method is a promising approach to encapsulate bioactive materials such as proteins, enzymes, antibiotics, and DNA fragments in biodegradable polymeric particles.  相似文献   
5.
The purpose of this research was to encapsulate Bifidobacterium bifidum using gellan, sodium alginate and prebiotics as coating materials, and to maximize the thermotolerance of the probiotics with an optimal combination of the coating materials. The optimal ratio of the coating materials for the microparticles under heat treatments (75 degrees C, 1 min) was obtained by using the response surface method and the sequential quadratic programming technique. Optimization results indicated that 2% sodium alginate mixed with 1% gellan gum as coating materials would produce the highest thermotolerance in terms of B. bifidum count. The verification experiment yielded a result close to the predicted values, with no significant difference (P > 0.05). The results of heat treatments also demonstrated that the addition of gellan gum in the walls of probiotic microcapsules provided improved protection for B. bifidum. These probiotic counts remained at 10(5)-10(6) CFU/g for the microcapsules stored for 2 months, then treated in heat and in simulated gastric fluid.  相似文献   
6.
Endostatin,a C-terminal fragment of collagen 18a,inhibits the growth of established tumorsand metastases in vivo by inhibiting angiogenesis.However,the purification procedures required for large-scale production and the attendant cost of these processes,together with the low effectiveness in clinicaltests,suggest that alternative delivery methods might be required for efficient therapeutic use of endostatin.In the present study,we transfected Chinese hamster ovary(CHO)cells with a human endostatin geneexpression vector and encapsulated the CHO cells in alginate-poly-L-lysine microcapsules.The release ofbiologically active endostatin was confirmed using the chicken chorioallantoic membrane assay.The encap-sulated endostatin-expressing CHO cells can inhibit the growth of primary tumors in a subcutaneous B 16tumor model when injected into the abdominal cavity of mouse.These results widen the clinical applicationof the microencapsulated cell endostatin delivery system in cancer treatment.  相似文献   
7.
The application of alginate–chitosan (AC) microcapsules to liver cell transplantation has not been previously investigated. In the current in vitro study, we have investigated the potential of AC microcapsules for the encapsulation of liver cells and show that the AC membrane supports the survival, proliferation and protein secretion by entrapped hepatocytes. The AC membrane provides cell immuno-isolation and has the potential for cell cryopreservation. The AC microcapsule has several advantages compared to more widely used alginate–poly-L-lysine (APA) microcapsules for the application of cell therapy.  相似文献   
8.
A novel reactive perstraction system has been developed based on liquid-core capsules, involving an enzyme-catalyzed reaction coupled with simultaneous in situ product recovery. Lipase-catalyzed reactions, hydrolysis of triprionin and nitrophenyl laurate, were selected to test the system and demonstrate the feasibility of immobilization of enzymes to the membranes of liquid-core capsules and the ability to extract hydrophobic products of the reaction within the capsule core. The lipase from Candida rugosa was immobilized to the microcapsules by adsorption and by covalent binding through activation with glutaraldehyde. In both cases improved temperature and operational stability were achieved. Both types of immobilization resulted in a basic shift of the pH optimum for activity, from 7.5 to 9.0. The presence of an organic phase within the capsule core allowed direct product separation and lead to a decrease in product inhibition of the lipase-catalyzed reaction.  相似文献   
9.
Cell microencapsulation is one of the promising strategies for the in vitro production of proteins or in vivo delivery of therapeutic products. In order to design and fabricate the optimized microencapsulated cell system, the Gompertz model was applied and modified to describe the growth and metabolism of microencapsulated cell, including substrate consumption and product formation. The Gompertz model successfully described the cell growth kinetics and the modified Gompertz models fitted the substrate consumption and product formation well. It was demonstrated that the optimal initial cell seeding density was about 4-5 x 10(6) cells/mL of microcapsule, in terms of the maximum specific growth rate, the glucose consumption potential and the product formation potential calculated by the Gompertz and modified Gompertz models. Modeling of cell growth and metabolism in microcapsules provides a guideline for optimizing the culture of microencapsulated cells.  相似文献   
10.
Microencapsulation within hydrogel microspheres holds much promise for drug and cell delivery applications. Synthetic hydrogels have many advantages over more commonly used natural materials such as alginate, however their use has been limited due to a lack of appropriate methods for manufacturing these microspheres under conditions compatible with sensitive proteins or cells. This study investigated the effect of flow rate and voltage on size and uniformity of the hydrogel microspheres produced via submerged electrospray combined with UV photopolymerization. In addition, the mechanical properties and cell survival within microspheres was studied. A poly(vinyl alcohol) (PVA) macromer solution was sprayed in sunflower oil under flow rates between 1-100 μL/min and voltages 0-10 kV. The modes of spraying observed were similar to those previously reported for electrospraying in air. Spheres produced were smaller for lower flow rates and higher voltages and mean size could be tailored from 50 to 1,500 μm. The microspheres exhibited a smooth, spherical morphology, did not aggregate and the compressive modulus of the spheres (350 kPa) was equivalent to bulk PVA (312 kPa). Finally, L929 fibroblasts were encapsulated within PVA microspheres and showed viability >90% after 24 h. This process shows great promise for the production of synthetic hydrogel microspheres, and specifically supports encapsulation of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号