首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   14篇
  国内免费   13篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2015年   7篇
  2014年   15篇
  2013年   26篇
  2012年   11篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   14篇
  2007年   14篇
  2006年   14篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   18篇
  2001年   16篇
  2000年   8篇
  1999年   14篇
  1998年   7篇
  1997年   9篇
  1996年   9篇
  1995年   4篇
  1994年   10篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   14篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   6篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   9篇
排序方式: 共有463条查询结果,搜索用时 156 毫秒
1.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   
2.
The development of mitochondrial NAD+-malate dehydrogenase (EC 1.1.1.37) in mung bean and cucumber cotyledons was followed. using the antibody raised against it, during and following germination. The developmental patterns were quite different between the two. In cucumber, the content of mitochondrial malate dehydrogenase continued to increase through 3–4 days after the beginning of imbibition. This was, at least in part, due to active synthesis of the enzyme protein, and the synthesis seemed to be regulated by the availability of the translatable mRNA for the enzyme. In mung bean, on the other hand, the enzyme was present in dry cotyledons at a rather high concentration, and remained at a constant level between day 1 and day 3 after the reduction of the content to one-half its initial level during the first day. De novo synthesis of the enzyme could not be detected in mung bean cotyledons by pulse-labeling experiment.  相似文献   
3.
意蜂和中蜂四种同工酶的研究   总被引:10,自引:0,他引:10  
用聚丙烯酰胺凝胶等电聚焦电泳分析了意蜂和中蜂的酯酶(Est)、异柠檬酸脱氢酶(Idh)、苹果酸酶(Me)和苹果酸脱氢酶(Mdh)同工酶.两个蜂种的四种同工酶谱有不同程度的差别、意蜂酯酶Ⅳ和苹果酸脱氢酶Ⅲ是多态性的;中蜂的四种同工酶没有多态现象.  相似文献   
4.
Plasmalemma-rich microsomal vesicles were prepared from whole leaf and acid-washed epidermal tissue of Vicia faba L. cv. Osnabrücker Markt by aqueous two-phase partitioning in dextran T-500 and polyethylenglycol 1350 aqueous phases. These vesicles were tightly sealed and predominantly right-side out, and contained a K+ -stimulated, mg2+-dependent and vanadate-sensitive ATPase. The enzyme from both tissues exhibited nearly identical properties: pH optimum 6.4, Km for ATP 0.60 mM(whole leaf) and 0.67 mM (epidermis). Vmax -480 nmol (mg protein)1 min1 (whole leaf) and 510 nmol (mg protein)1 min1 (epidermis), I50 (Na3,VO4) 7.5 μM (whole leaf) and 15 μM (epidermis). The enzyme was not inhibited by NO3(50 mM)or sodium azide (I mM). DCCD (20 μM) reduced enzyme activity to 50% (whole leaf) and 58% (epidermis), gramicidin S (20 μM) to 36% (whole leaf) and 41%(epidermis). Ca2+ inhibited the ATPase [I50, C2+: 0.5 mM(whole leaf) and 0.8 mM(epidermis)]. Ca2+ inhibited the ATPase [I50, C2+ 0.5 mM(whole leaf) und 0.8 (epidermis)]. The vanadate-sensitive ATPase from whole leaf and epidermal tissue was slightly but significantly stimulated by fusicoccin (FC) at a concentration (0.13 μM) promoting stomatal opening. The stimulation was not seen in the solubilized ATPase. Stomata of the cultivar used here were insensitive lo (±)ABA up to 2 μM level which is effective in most other cultivars and species. Likewise, at this concentration no effect of ABA on the activity of the epidermal ATPase was observed. The data are discussed with respect to the interaction of FC and ABA with the ATPase.  相似文献   
5.
The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m–2 under nitrogen and 50 W·m–2 under air, while NADP photoreduction was saturated at 240 W·m–2. Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.Abbreviations Fd ferredoxin - FBPase fructose-1,6-bisphosphatase - FTR ferredoxin-thioredoxin reductase - LEM light effect mediator - NADP-MDH NADP-malate dehydrogenase - Td thioredoxin  相似文献   
6.
Abstract Three proteins from Halobacterium marismortui , malate dehydrogenase (hMDH), glutamate dehydrogenase (hGDH) and ferredoxin (hFD) were purified and characterized with respect to their molecular masses, amino acid composition and, for hFD only, primary structure. Striking features of halophilic proteins are: the high excess of acidic over basic residues; acidic clusters in the sequence. Low-salt concentration causes inactivation and changes in structural parameters of hMDH and hGDH. Reactivation of hMDH involves long-lived stable intermediates. The salt concentration optimum of enzymic activity is independent of salt nature. The high capacity of halophilic proteins to retain water and salt is due to unique molecular properties, studied by physico-chemical techniques.  相似文献   
7.
D. Ritz  M. Kluge  H. J. Veith 《Planta》1986,167(2):284-291
Phyllodia of the Crassulacean acid metabolism (CAM) plant Kalanchoë tubiflora were allowed to fix 13CO2 in light and darkness during phase IV of the diurnal CAM cycle, and during prolongation of the regular light period. After 13CO2 fixation in darkness, only singly labelled [13C]malate molecules were found. Fixation of 13CO2 under illumination, however, produced singly labelled malate as well as malate molecules which carried label in two, three or four carbon atoms. When the irradiance during 13CO2 fixation was increased, the proportion of singly labelled malate decreased in favour of plurally labelled malate. The irradiance, however, did not change either the ratio of labelled to unlabelled malate molecules found in the tissue after the 13CO2 application, or the magnitude of malate accumulation during the treatment with label. The ability of the tissue to store malate and the labelling pattern changed throughout the duration of the prolonged light period. The results indicate that malate synthesis by CAM plants in light can proceed via a pathway containing two carboxylation steps, namely ribulose-1,5-bisphosphate-carboxylase/oxygenase (EC 4.1.1.39) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) which operate in series and share common intermediates. It can be concluded that, in light, phosphoenolpyruvate carboxylase can also synthesize malate independently of the proceeding carboxylation step by ribulose-1,5-bisphosphate carboxylase/oxygenase.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - TMS trimethylsilyl  相似文献   
8.
A method for the determination of bicarbonate in buffer solutions between pH 7.5 and 8.75 and in stock solutions of NaHCO3 is described. The HCO-3 is reacted with phosphoenolpyruvate (PEP) in the presence of PEP carboxylase (EC 4.1.1.31) and the oxaloacetate formed reduced to malate by NADH in the reaction catalyzed by malate dehydrogenase (EC 1.1.1.37). The extent of oxidation of NADH is measured spectrophotometrically. Experiments using standard solutions show that 1 mol of NADH is oxidized per mol of HCO-3 added. The method was used to establish the precautions needed to prepare buffer solutions containing less than 1% of the bicarbonate which would be present in the same buffers in equilibrium with air.  相似文献   
9.
The cucumber malate synthase (MS) gene, including 1856 bp of 5 non-trnascribed sequence, has been transferred into Petunia (Mitchell) and Nicotiana plumbaginifolia plants using an Agrobacterium binary vector. The transferred gene is found in variable copy number in different transformants, and is stably transmitted in each case as a single Mendelian character. Transgene mRNA accumulates in the seedling during the first three days of germination, then declines in amount as the cotyledons emerge from the seed. The decline is more pronounced in light-grown seedlings than in dark-grown seedlings. Expression of the MS transgene is also detected at a low level in petals of transformed Petunia plants. In these respects the pattern of MS gene expression is similar in cucumber and in trnasformed plants, showing that the transferred DNA fragment contains a functional MS gene. A 1076 bp fragment of 5 sequence was linked to the -glucuronidase reporter gene and transferred into Nicotiana, where it was shown to direct temporal and spatial patterns of expression similar to that of the complete MS gene. However, histochemical localisation of -glucuronidase activity demonstrated that the chimaeric gene is expressed not only in cotyledons of transgenic plants, but also in endosperm and some hypocotyl cells during early germination. The relevance of these findings to the control of malate synthase gene expression is discussed.  相似文献   
10.
Summary Anoxia tolerance, glycogen degradation, free amino acid pool, adenylate energy charge and the accumulation and excretion of end products were monitored inLumbriculus variegatus Müller throughout 48 h of anoxia. A transition period lasting about 4 h could be distinguished from subsequent events during which malate, present in high amounts in the resting animals, is utilized, probably by conversion to succinate. Up to the 12th hour of anoxia there is an increase in concentration of free amino acids, except aspartate. Glutamate increases rapidly during the first half hour but decreases thereafter. Beginning with the second hour of anoxia the alanine concentration increases at the same rate glutamate concentration decreases, but the source of nitrogen during the first hour is unknown. It is argued that the nitrogen required for the synthesis of some of the amino acids is ultimately derived from proteolysis. After about 3 h of anoxia propionate and acetate are synthesized. At first these acids accumulate in the tissues, but after 4–6 h they are excreted into the surrounding medium. Acetate is excreted over the whole experimental period at a constant rate, whereas the excretion rate of propionate decreases slowly with time. The propionate/acetate ratio is in excess of 2. Classic malate dismutation is by far the most important mechanism in the maintenance of redox balance. Depletion of glycogen stores appears to play an important role in determining anoxic survival time. Due to extremely low activity of PEPCK the ratio of the specific activities of PK and PEPCK is very high. Further, the kinetic properties of pyruvate kinase do not support the assumption of a shift of the glycolytic carbon flow at the PEP level.Abbreviations PK Pyruvate kinase - PEPCK phosphoenolpyruvate carboxykinase - PEP phospho(enol)pyruvate - FBP fructose-1,6-bisphosphate - AEC adenylate energy charge - EMP-scheme Embden-Meyerhof-Parnas scheme of glycolysis - f w fresh body weight - dw dry body weight  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号