首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2016年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.  相似文献   
2.
This article presents an investigation of the effect of salt and phage concentrations on the binding affinity of magnetoelastic (ME) biosensors. The sensors were fabricated by immobilizing filamentous phage on the ME platform surface for the detection of Bacillus anthracis spores. In response to the binding of spores to the phage on the ME biosensor, a corresponding decrease occurs in resonance frequency. Transmission electron microscopy (TEM) was used to verify the structure of phage under different combinations of salt/phage concentration. The chemistry of the phage solution alters phage bundling characteristics and, hence, influences both the sensitivity and detection limit of the ME biosensors. The frequency responses of the sensors were measured to determine the effects of salt concentration on the sensors' performance. Scanning electron microscopy (SEM) was used to confirm and quantify the binding of spores to the sensor surface. This showed that 420 mM salt at a phage concentration of 1 x 10(11) vir/mL results in an optimal distribution of immobilized phages on the sensor surface, consequently promoting better binding of spores to the biosensor's surface. Additionally, the sensors immobilized with phage under this condition were exposed to B. anthracis spores in different concentrations ranging from 5 x 10(1) to 5 x 10(8) cfu/mL in a flowing system. The results showed that the sensitivity of this ME biosensor was 202 Hz/decade.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号