首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   100篇
  国内免费   4篇
  2023年   21篇
  2022年   4篇
  2021年   3篇
  2020年   34篇
  2019年   49篇
  2018年   26篇
  2017年   37篇
  2016年   21篇
  2015年   28篇
  2014年   30篇
  2013年   17篇
  2012年   26篇
  2011年   24篇
  2010年   17篇
  2009年   18篇
  2008年   31篇
  2007年   30篇
  2006年   27篇
  2005年   23篇
  2004年   24篇
  2003年   18篇
  2002年   16篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
排序方式: 共有555条查询结果,搜索用时 46 毫秒
1.
We demonstrate that within-year climatic variability, particularly rainfall seasonality, is the most significant variable explaining spatial patterns of bird abundance in Australian tropical rainforest. The likely mechanism causing this pattern is a resource bottleneck (insects, nectar, and fruit) during the dry season that limits the population size of many species. The patterns support both the diversity–climatic–stability hypothesis and the species–energy hypothesis but clearly show that seasonality in energy availability may be a more significant factor than annual totals or means. An index of dry season severity is proposed that quantifies the combined effect of the degree of dryness and the duration of the dry season. We suggest that the predicted increases in seasonality due to global climate change could produce significant declines in bird abundance, further exacerbating the impacts of decreased range size, increased fragmentation, and decreased population size likely to occur as a result of increasing temperature. We suggest that increasing climatic seasonality due to global climate change has the potential to have significant negative impacts on tropical biodiversity.  相似文献   
2.
3.
4.
1. Occupancy frequency distributions (OFDs) are one means to study species distribution patterns, allowing the delineation of rare and common species. Very few studies have deconstructed entire assemblages by ecological or biological characteristics and subsequently examined OFDs in subgroups of species. 2. The effect of deconstruction of entire assemblages by niche breadth, niche position or body size classes on OFDs in stream insects in three drainage basins was examined. It was hypothesized that OFDs should not vary between different drainage basins, but they should be affected by deconstruction into different niche breadth, niche position or body size classes. 3. The OFDs were typically strongly right‐skewed in all drainage basins. The set of small‐sized species was strongly dominated by rare species, whereas the importance of rare species decreased with increasing body size. Further, while the OFDs of sets of species with marginal niche position or small niche breadth were strongly dominated by rare species, those of species with non‐marginal niche position or large niche breadth showed highly variable degrees of occupancy. The OFDs of non‐marginal species were even uniform in the entire data and one drainage basin, providing partial support to the a priori hypothesis. 4. Niche‐based explanations are likely to account for occupancies of marginal and small‐niched species, whereas the distributions of non‐marginal and broad‐niched species may be not only affected by niche‐based mechanisms but also by spatial dynamics. Deconstruction of OFDs by ecological and biological traits thus showed that the patterns may vary between different subgroups of species.  相似文献   
5.
6.
7.
Aim Data and analyses of elevational gradients in diversity have been central to the development and evaluation of a range of general theories of biodiversity. Elevational diversity patterns have, however, been severely understudied for microbes, which often represent decomposer subsystems. Consequently, generalities in the patterns of elevational diversity across different trophic levels remain poorly understood. Our aim was to examine elevational gradients in the diversity of macroinvertebrates, diatoms and bacteria along a stony stream that covered a large elevational gradient. Location Laojun Mountain, Yunnan province, China. Methods The sampling scheme included 26 sites spaced at elevational intervals of 89 m from 1820 to 4050 m elevation along a stony stream. Macroinvertebrate and diatom richness were determined based on the morphology of the specimens. Taxonomic richness for bacteria was quantified using a molecular fingerprinting method. Over 50 environmental variables were measured at each site to quantify environmental variables that could correlate with the patterns of diversity. We used eigenvector‐based spatial filters with multiple regressions to account for spatial autocorrelation. Results The bacterial richness followed an unexpected monotonic increase with elevation. Diatoms decreased monotonically, and macroinvertebrate richness showed a clear unimodal pattern with elevation. The unimodal richness pattern for macroinvertebrates was best explained by the mid‐domain effect (r2 = 0.72). The diatom richness was best explained by the variation in nutrient supply, and the increase in bacterial richness with elevation may be related to an increased carbon supply. Main conclusions We found contrasting patterns in elevational diversity among the three studied multi‐trophic groups comprising unicellular and multicellular aquatic taxa. We also found that there may be fundamental differences in the mechanisms underlying these species diversity patterns.  相似文献   
8.
Body size and area‐incidence relationships: is there a general pattern?   总被引:1,自引:0,他引:1  
Aim This paper tests firstly for the existence of a general relationship between body size of terrestrial animals and their incidence across habitat patches of increasing size, and secondly for differences in this relationship between insects and vertebrates. Location The analysis was based on the occupancy pattern of 50 species from 15 different landscapes in a variety of ecosystems ranging from Central European grassland to Asian tropical forest. Methods The area‐occupancy relationship was described by incidence functions that were calculated using logistic regression. A correlation analysis between body size of the species and the patch area referring to the two given points of the incidence function was performed. In order to test for an effect of taxon (insects vs. vertebrates), an analysis of covariance was conducted. Results In all species, the incidence was found to increase with increasing patch area. The macroecological analysis showed a significant relationship between the incidence in habitat patches and the body size of terrestrial animals. The area requirement was found to increase linearly with increasing body size on a log‐log scale. This relationship did not differ significantly between insects and vertebrates. Conclusions The approach highlighted in this paper is to associate incidence functions with body size. The results suggest that body size is a general but rather rough predictor for the area requirements of animals. The relationship seems valid for a wide range of body sizes of terrestrial animals. However, further studies including isolation of habitats as well as additional species traits into the macroecological analysis of incidence functions are needed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号