首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   28篇
  国内免费   7篇
  2023年   7篇
  2022年   6篇
  2021年   5篇
  2020年   15篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   19篇
  2012年   14篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   14篇
  2003年   12篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
1.
Mitosis is the key event of the cell cycle during which the sister chromatids are segregated onto two daughter cells. It is well established that abrogation of the normal mitotic progression is a highly efficient concept for anti‐cancer treatment. In fact, various drugs that target microtubules and thus interfere with the function of the mitotic spindle are in clinical use for the treatment of various human malignancies for many years. However, since microtubule inhibitors not only target proliferating cells severe side effects limit their use. Therefore, the identification of novel mitotic drug targets other than microtubules have gained recently much attention. This review will summarize the latest developments on the identification and clinical evaluation of novel mitotic drug targets and will introduce novel concepts for chemotherapy that are based on recent progress in our understanding how mitotic progression is regulated and how anti‐mitotic drugs induce tumor cell death. J. Cell. Biochem. 111: 258–265, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
2.
Ciliary or flagellar movement is the model of microtubule-dependent motility, the best studied at the molecular level. It is based on the relative sliding of outer doublets of microtubules that are linked at their proximal end to the basal structure and interconnected by associated proteins, among which dynein ATPase is at the origin of the movement. It is regulated from inside and outside media by various diffusible factors such as Ca2+, cyclic adenosine monophosphate (cAMP), polypeptides and so on (see other conferences presented during this meeting). Other motility processes are based on microtubules: vesicle and organelle transport through the cytoplasm (axonal flow in neurons, pigment granule movements in fish chromatophores, movements of particles along heliozoan axopods, etc.) could be mediated by microtubule motors such as kinesin or MAP 1C. Kinesin and MAP 1C, like dynein, are proteins that bind to microtubules and show an ATPase activity associated with force production. They differ from each other by their structure, and biochemical and pharmacological properties. The movements of chromosomes during mitosis and meiosis have long been studied, but are still poorly understood at the molecular level; this topic will be discussed in the light of recent data. Other constituents of the cytoskeleton are certainly involved in cellular motility: actin microfilaments and their motor myosin, intermediate filaments, non-actin filaments, all organized around the Microtubule Organizing Center (MTOC). As more information becomes available, it seems increasingly obvious that these various networks are closely interconnected and that each component probably modulates, resists, or favors properties of its partners, contributing to cellular and intracellular motility.  相似文献   
3.
Neurons require a large amount of intracellular transport. Cytoplasmic polypeptides and membrane-bounded organelles move from the perikaryon, down the length of the axon, and to the synaptic terminals. This movement occurs at distinct rates and is termed axonal transport. Axonal transport is divided into the slow transport of cytoplasmic proteins including glycolytic enzymes and cytoskeletal structures and the fast transport of membrane-bounded organelles along linear arrays of microtubules. The polypeptide compositions of the rate classes of axonal transport have been well characterized, but the underlying molecular mechanisms of this movement are less clear. Progress has been particularly slow toward understanding force-generation in slow transport, but recent developments have provided insight into the molecular motors involved in fast axonal transport. Recent advances in the cellular and molecular biology of one fast axonal transport motor, kinesin, have provided a clearer understanding of organelle movement along microtubules. The availability of cellular and molecular probes for kinesin and other putative axonal transport motors have led to a reevaluation of our understanding of intracellular motility.  相似文献   
4.
To understand force generation under a wide range of loads, the stepping of single kinesin molecules was measured at loads from −20 to 42 pN by optical tweezers with high temporal resolution. The optical trap has been improved to halve positional noise and increase bandwidth by using 200-nm beads. The step size of the forward and backward steps was 8.2 nm even over a wide range of loads. Histograms of the dwell times of backward steps and detachment fit well to two independent exponential equations with fast (~0.4 ms) and slow (>3 ms) time constants, indicating the existence of a fast step in addition to the conventional slow step. The dwell times of the fast steps were almost independent of the load and ATP concentration, while those of the slow backward steps and detachment depended on those. We constructed the kinetic model to explain the fast and slow steps under a wide range of loads.  相似文献   
5.
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.  相似文献   
6.
7.
A series of 4-amino-5-((4-chlorophenyl)diazenyl)-6-(alkylamino)-1-methylpyrimidin-2-one deri- vatives 7–16 were prepared by nucleophilic displacement of 6-chloro-pyrimidine 6 by various amines. 4-Amino-5-((aryl-4-yl)diazenyl)-6-aryl-1-methylpyrimidin-2-one analogs 19–27, as well as 4-amino-5-((aryl-[1,1′-biphenyl]-4-yl)diazenyl)-6-aryl-1-methylpyrimidin-2-one 29–31 and 4-amino-6-aryl-1-methylpyrimidin-2-one 34–34, were synthesized via Suzuki cross-coupling reaction, using Pd(PPh3)4 as a catalyst and arylboronic acids as reagents. All compounds were evaluated for their antiviral activity against the replication of HIV-1 and HIV-2 in MT-4. Compounds 6, 16, 27, and 29 showed a 50% effective concentration of >2.15, >3.03, >2.29, and >1.63 μM, respectively, but no selectivity was observed (selectivity index < 1). Two of the newly synthesized pyrimidines 12 and 29 exhibited moderate kinesin Eg5 inhibition.  相似文献   
8.
Kinesin family member 2C (KIF2C), a substantial mitotic regulator, has been verified to exert a malignant function in several cancers. However, its function in hepatocellular carcinoma (HCC) remains unclear. In this study, the expression profile of KIF2C in HCC was characterized through the dataset from the TCGA and clinical tissue microarrays containing 220 pairs of resected HCC tissues and adjacent nontumor tissues in our hospital. The results indicated that KIF2C was substantially higher expression in tumor tissues than adjacent nontumor tissues. High expression of KIF2C significantly correlated with large tumor (>5.0 cm) (P = .001) and implied a dismal postoperative overall survival (OS) (hazard ratio [HR] = 1.729; P = .002) in our cohort of patients. Gain and loss of function assays displayed that KIF2C promoted HCC cell proliferation, accelerated cell cycle progression, and impeded apoptosis. By bioinformatic tools and mechanistic investigation, we found that KIF2C interacted with various cell-cycle-related proteins and was significantly involved in growth-promoting pathways. KIF2C upregulated PCNA and CDC20 expression. Subsequently, we investigated the regulation of KIF2C by competing endogenous RNA and elucidated that has-miR-6715a-3p was directly bond to the 3′-untranslated region of KIF2C through dual luciferase assays, thereby inhibiting KIF2C expression. Furthermore, the long noncoding RNA GS1-358P8.4 was found to be a candidate of KIF2C for has-miR-6715a-3p binding. HCC patients with high lncRNA-GS1-358P8.4 expression had shorter OS and relapse-free survival compared to those with low expression, which was accordance with the KIF2C. Taken together, KIC2C aggravated HCC progression, it could serve as a prognostic indicator and confer a novel target for clinical treatment.  相似文献   
9.
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   
10.
CK1δ (Casein kinase I isoform delta) is a member of CK1 kinase family protein that mediates neurite outgrowth and the function as brain-specific microtubule-associated protein. ATP binding kinase domain of CK1δ is essential for regulating several key cell cycle signal transduction pathways. Mutation in CK1δ protein is reported to cause cancers and affects normal brain development. S97C mutation in kinase domain of CK1δ protein has been involved to induce breast cancer and ductal carcinoma. We performed molecular docking studies to examine the effect of this mutation on its ATP-binding affinity. Further, we conducted molecular dynamics simulations to understand the structural consequences of S97C mutation over the kinase domain of CK1δ protein. Docking results indicated the loss of ATP-binding affinity of mutant structure, which were further rationalized by molecular dynamics simulations, where a notable loss in 3-D conformation of CK1δ kinase domain was observed in mutant as compared to native. Our results explained the underlying molecular mechanism behind the observed cancer associated phenotype caused by S97C mutation in CK1δ protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号