首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2016篇
  免费   103篇
  国内免费   112篇
  2024年   2篇
  2023年   37篇
  2022年   32篇
  2021年   65篇
  2020年   45篇
  2019年   93篇
  2018年   65篇
  2017年   30篇
  2016年   29篇
  2015年   39篇
  2014年   116篇
  2013年   153篇
  2012年   91篇
  2011年   125篇
  2010年   81篇
  2009年   110篇
  2008年   106篇
  2007年   119篇
  2006年   111篇
  2005年   111篇
  2004年   74篇
  2003年   73篇
  2002年   64篇
  2001年   45篇
  2000年   41篇
  1999年   31篇
  1998年   31篇
  1997年   26篇
  1996年   37篇
  1995年   35篇
  1994年   35篇
  1993年   31篇
  1992年   31篇
  1991年   22篇
  1990年   10篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   12篇
  1983年   7篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有2231条查询结果,搜索用时 15 毫秒
1.
目的:比较血小板生成素与白介素-11治疗胃癌患者术后化疗血小板减少症的时效和安全性。方法:术后辅助化疗出现血小板计数低于75×109/L的进展期胃癌患者68例,将其分为TPO组与IL-11组,分别为35例和33例。分别皮下注射rhTPO 15000U,每日1次;rhIL-11 1.5 mg,每日1次,当血小板计数125×109/L或比用药前上升50×109/L,即停止给药,疗程最长为14天。每3天抽取外周静脉血2 m L,通过全自动血液分析仪测定血小板计数,密切观察出现的不良反应并记录。比较两组患者不同临床病理资料、血小板计数、血小板计数升至75×109/L和125×109/L的时程、药物不良反应。结果:两组患者年龄、性别、化疗方案、血小板最低值出现的化疗周期及临床病理分期的比较均没有统计学差异(P值均0.05)。TPO组与IL-11组血小板动态值的比较,第9天出现显著差异(P=0.032)。TPO组与IL-11组血小板计数恢复至75×109/L和125×109/L所需的时间,有显著差异(P=0.041,P=0.013)。TPO组中,有3例(8.6%)患者发生不良反应,IL-11组中,有13例(39.4%)患者发生不良反应,TPO组患者出现的不良反应少且较轻微(P=0.006)。结论:rhTPO治疗胃癌患者术后化疗血小板减少症时效快,安全性好。  相似文献   
2.
We previously reported 2-aminobenzoxazole analogue 1 as a potent ChemR23 inhibitor. The compound showed inhibitory activity against chemerin-induced calcium signaling through ChemR23 internalization in CAL-1 cells, which are cell lines of plasmacytoid dendric cells (pDCs). Furthermore, compound 2 inhibited chemotaxis of CAL-1 triggered by chemerin in vitro. However, we noted a difference in the ChemR23 response to our inhibitor between rodents and non-rodents in a previous study. To address this issue, we performed optimization of ChemR23 inhibitors using CAL-1 cells endogenously expressing human ChemR23 and conducted a pharmacokinetics study in cynomolgus monkeys. Various substituents at the 4-position of the benzoxazole ring exhibited potent in vitro bioactivity, while those at the 6-position were not tolerated. Among substituents, a carboxyl group was identified as key for improving the oral bioavailability in cynomolgus monkeys. Compound 38a with the acidic part changed from a tetrazole group to a 1,2,4-oxadiazol-5-one group to improve bioactivity and pharmacokinetic parameters exhibited inhibitory activity against chemerin-induced chemotaxis in vitro. In addition, we confirmed the ChemR23 internalization of pDCs by compound 38a orally administered to cynomolgus monkeys. These 2-aminobenzoxazole-based ChemR23 inhibitors may be useful as novel immunotherapeutic agents capable of suppressing the migration of pDCs, which are known to be major producers of type I interferons in the lesion area of certain autoimmune diseases, such as systemic lupus erythematosus and psoriasis.  相似文献   
3.
4.
Summary Oligonucleotide fingerprinting shows the precursor form of the 23S ribosomal RNA fromBacillus megaterium to be larger than its mature counterpart, by some 8 percent, or approximately 250 nucleotides. It can further be shown that the 23SrRNA precursor doesnot contain the 5SrRNA sequence, as had been previously suggested.  相似文献   
5.
Renal tubular diseases may present with osteopenia, osteoporosis or osteomalacia, as a result of significant derangements in body electrolytes. In case of insufficient synthesis of calcitriol, as in renal failure, the more complex picture of renal osteodystrophy may develop. Hypothetically, also disturbed renal production of BMP-7 and Klotho could cause bone disease. However, the acknowledgment that osteocytes are capable of producing FGF23, a phosphaturic hormone at the same time modulating renal synthesis of calcitriol, indicates that it is also bone that can influence renal function. Importantly, a feed-back mechanism exists between FGF23 and calcitriol synthesis, while Klotho, produced by the kidney, determines activity and selectivity of FGF23. Identification of human diseases linked to disturbed production of FGF23 and Klotho underlines the importance of this new bone-kidney axis. Kidney and bone communicate reciprocally to regulate the sophisticated machinery responsible for divalent ions homeostasis and for osseous or extraosseous mineralisation processes.  相似文献   
6.
Interleukin (IL)-6, a cytokine featuring redundancy and pleiotropic activity, contributes to host defense against acute environmental stress, while dysregulated persistent IL-6 production has been demonstrated to play a pathological role in various autoimmune and chronic inflammatory diseases. Targeting IL-6 is thus a rational approach to the treatment of these diseases. Indeed, clinical trials of tocilizumab, a humanized anti-IL-6 receptor antibody have verified its efficacy and tolerable safety for patients with rheumatoid arthritis, Castleman''s disease and systemic juvenile idiopathic arthritis, resulting in approval of this innovative biologic for treatment of these diseases. Moreover, a considerable number of case reports and pilot studies of off-label use of tocilizumab point to the beneficial effects of tocilizumab for a variety of other phenotypically different autoimmune and chronic inflammatory diseases. Elucidation of the source of IL-6 and of mechanisms through which IL-6 production is dysregulated can thus be expected to lead to clarification of the pathogenesis of various diseases.  相似文献   
7.
Interleukin-1β converting enzyme is the first member of a new class of cysteine proteases. The most distinguishing feature of this family is a nearly absolute specificity for cleavage at aspartic acid. This enzyme has been the subject of intense research because of its role in the production of IL-1β, a key mediator of inflammation. These studies have culminated in the design of potent inhibitors and determination of its crystal structure. The structure secures the relationship of the enzyme to CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans, suggesting that members of this family function in cell death in vertebrates.  相似文献   
8.
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.  相似文献   
9.
10.
Cytokines represent one of the most important elements in the communication among different cell types. They play an increasingly better understood role in the communication among hematopoietic cells and in particular in the reciprocal regulation of effector cell types of innate or natural resistance (phagocytic cells and Natural Killer (NK) cells) and those of adaptive immunity (T and B lymphocytes). Lymphocytes produce several cytokines with either stimulatory (e.g., colony stimulatory factor) or suppressive (e.g., tumor necrosis factors and interferons) effects on proliferation of early hematopoietic cells. Many of these cytokines, alone or acting in synergistic combinations, also have a differentiation-inducing ability on immature myeloid cells and act as powerful potentiators of the cellular functions of terminally differentiated phagocytic cells. The communication between lymphocytes and phagocytic cells is not unidirectional, as phagocytic cells produce factors that regulate lymphocyte activation. In addition to their role as antigen presenting cells expressing costimulatory accessory molecules and secreting cytokines (e.g., IL-1, IL-6, TNF), phagocytic cells have been recently shown to produce Natural Killer cell Stimulatory Factor (NKSF/IL-12). IL-12 is a heterodimeric cytokine with important modulatory functions on cytotoxicity of NK and T cells, lymphocyte proliferation, lymphokine production, and development of T helper cell subsets. These communications between phagocytic cells and lymphocytes are further regulated by negative and positive feedback mechanisms that contribute to maintain the homeostasis of the system in physiologic conditions and to govern the changes in this equilibrium needed for the response to infectious or other foreign agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号