首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1437篇
  免费   66篇
  国内免费   87篇
  2023年   11篇
  2022年   7篇
  2021年   17篇
  2020年   46篇
  2019年   40篇
  2018年   33篇
  2017年   38篇
  2016年   52篇
  2015年   39篇
  2014年   43篇
  2013年   123篇
  2012年   34篇
  2011年   66篇
  2010年   36篇
  2009年   78篇
  2008年   55篇
  2007年   61篇
  2006年   66篇
  2005年   71篇
  2004年   51篇
  2003年   65篇
  2002年   58篇
  2001年   48篇
  2000年   39篇
  1999年   29篇
  1998年   34篇
  1997年   31篇
  1996年   23篇
  1995年   32篇
  1994年   33篇
  1993年   32篇
  1992年   30篇
  1991年   22篇
  1990年   14篇
  1989年   14篇
  1988年   8篇
  1987年   8篇
  1986年   3篇
  1985年   26篇
  1984年   23篇
  1983年   9篇
  1982年   27篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1590条查询结果,搜索用时 15 毫秒
1.
2.
Feruloyl esterase (FAE)-catalyzed esterification reaction is as a potential route for the biosynthesis of feruloylated oligosaccharides as functional ingredients. Immobilization of FAE from Humicola insolens on metal chelate-epoxy supports was investigated. The study of effects of immobilization parameters using response surface methodology revealed the significance of enzyme/support ratio (3.25-29.25 mg/g support), immobilization time (14-38 h), buffer molarity (0.27-1.25 M) and pH (4.0-8.0). The interactions between enzyme-to-support ratio/buffer molarity and enzyme-to-support ratio/pH were found to be critical for the modulation of the immobilization activity yield and the retention of specific activity, respectively. Optimum conditions for FAE-immobilization on metal chelate Sepabeads® EC-EP R were identified to be 22.75 mg FAE/g support, pH of 5.0, 27.7 h and buffer molarity of 0.86 M. At these conditions, an activity yield of 82.4%, a specific activity retention of 143.4%, and an enzyme activity of 395.4 μmol/min. g support were achieved. Further incubation of the immobilized FAE at pH 10.0 improved its thermostability. Increasing the pore size of the epoxy support improved the retention of FAE hydrolytic activity and the esterifying efficiency of the immobilized biocatalyst. Optimally immobilized and stabilized FAE on metal chelate-epoxy support retained up to 92.9% of the free enzyme feruloylation efficiency to xylooligosaccharides..  相似文献   
3.
A biofilter composed of yeasts and cassava peel was used to detoxify fertilizer plant effluent. The biological oxygen demand was reduced on treatment from a range of 1200–1400 mg/l to a range 135–404 mg/l. The ammonia-nitrogen (NH3–N) and nitrate-nitrogen (NO3–N) were reduced after treatment from 1000 to 10 mg/l and from 100 to 17.6 mg/l, respectively. The biofilter is simple and easy to handle with high efficiency of 98%.  相似文献   
4.
The capabilities of immobilized Fusarium oxysporum f. sp. lini, Mucor sp., and Saccharomyces cerevisiae in fermenting pentose to ethanol have been compared. S. cerevisiae was found to have the best fermentation rate on d-xylulose of 0.3 g l?1 h?1. By using a separate isomerase column for converting d-xylose to d-xylulose and a yeast column for converting d-xylulose to ethanol, an ethanol concentration of 32 g l?1 was obtained from 10% d-xylose. The ethanol yield was calculated to be 64% of the theoretical yield.  相似文献   
5.
Kinetics of photoelectric and absorption response signals were measured on samples containing oriented purple membranes immobilized in polyacrylamide gel. The orientation and aggregation states of purple membranes remain constant independently of pH and ionic strength in such samples and the gel does not influence the protom pump. The ‘gel method’ described in this study enables direct investigation of proton pump of bacteriorhodopsin and a simultaneous measurement of absorption signals within a wide range of parameters of the solution surrounding purple membranes and offers possibilities for study of other types of membranes as well.  相似文献   
6.
Sucrose phosphorylase is an interesting biocatalyst that can glycosylate a variety of small molecules using sucrose as a cheap but efficient donor substrate. The low thermostability of the enzyme, however, limits its industrial applications, as these are preferably performed at 60°C to avoid microbial contamination. Cross-linked enzyme aggregates (CLEAs) of the sucrose phosphorylase from Bifidobacterium adolescentis were found to have a temperature optimum that is 17°C higher than that of the soluble enzyme. Furthermore, the immobilized enzyme displays an exceptional thermostability, retaining all of its activity after 1 week incubation at 60°C. Recycling of the biocatalyst allows its use in at least ten consecutive reactions, which should dramatically increase the commercial potential of its glycosylating activity.  相似文献   
7.
As a solution to the problems of mass transfer limitation in submerged cultures and scale up of solid-state/liquid-surface cultures, an alternating liquid phase–air phase bioreactor was developed. It consisted of a bioreactor equipped with a siphon system and a reservoir. Aspergillus awamori was immobilized in loofa sponge inside the bioreactor and culture broth was pumped from the reservoir into the bioreactor. Each time the culture broth level reached a critical level, the broth automatically siphoned back into the reservoir. Thus the immobilized cells were alternatingly submerged and exposed to air. The duration of each phase was controlled by the pumping rate and with an on-off timer. During amylase production from soluble starch and raw cassava starch, the optima ratios of the liquid to air phases were 12 h : 12 h and 3 h : 6 h respectively. Saccharomyces cerevisiae IR2 was immobilized in the reservoir and the system was used for simultaneous amylase production, hydrolysis and ethanol production from raw cassava starch. The process was very stable for more than 7 batches with high ethanol yield of 0.46 g-ethanol/g-starch and productivity of 1.73 g-ethanol/L/h. These values are high, the system can be scaled up, and thus it has many potential applications.  相似文献   
8.
The titanium-chelation method has been used to immobilize β-amylase (1,4-α-d-glucan maltohydrolase, EC 3.2.1.2) on to Spheron. On various grades of Spheron, protein coupling yields of 56–76% were obtained with barley and sweet-potato β-amylases. The specific enzymic activities of the immobilized enzymes fell in the range 3.7–7.6% of those of the soluble enzymes. The immobilized enzymes were more stable than the soluble, especially in the presence of l-cysteine and serum albumin. The presence of cysteine and serum albumin brought about increases in activity in the preparations, presumably by regenerating essential thiol groups in the enzyme which had been oxidized during the operations. Maltose could be separated from amylopectin and other large polysaccharides by chromatography on Spheron P100, and a system was developed in which maltose, produced by hydrolysis of amylopectin applied in pulses to a column of immobilized β-amylase, was separated from starting material and by-products on a second column of Spheron P100.  相似文献   
9.
Over the last decades, production of microalgae and cyanobacteria has been developed for several applications, including novel foods, cosmetic ingredients and more recently biofuel. The sustainability of these promising developments can be hindered by some constraints, such as water and nutrient footprints. This review surveys data on N2-fixing cyanobacteria for biomass production and ways to induce and improve the excretion of ammonium within cultures under aerobic conditions. The nitrogenase complex is oxygen sensitive. Nevertheless, nitrogen fixation occurs under oxic conditions due to cyanobacteria-specific characteristics. For instance, in some cyanobacteria, the vegetative cell differentiation in heterocyts provides a well-adapted anaerobic microenvironment for nitrogenase protection. Therefore, cell cultures of oxygenic cyanobacteria have been grown in laboratory and pilot photobioreactors (Dasgupta et al., 2010; Fontes et al., 1987; Moreno et al., 2003; Nayak & Das, 2013). Biomass production under diazotrophic conditions has been shown to be controlled by environmental factors such as light intensity, temperature, aeration rate, and inorganic carbon concentration, also, more specifically, by the concentration of dissolved oxygen in the culture medium. Currently, there is little information regarding the production of extracellular ammonium by heterocytous cyanobacteria. This review compares the available data on maximum ammonium concentrations and analyses the specific rate production in cultures grown as free or immobilized filamentous cyanobacteria. Extracellular production of ammonium could be coupled, as suggested by recent research on non-diazotrophic cyanobacteria, to that of other high value metabolites. There is little information available regarding the possibility for using diazotrophic cyanobacteria as cellular factories may be in regard of the constraints due to nitrogen fixation.  相似文献   
10.
Abstract

Polyamine microspheres (PA-M) prepared using polyethyleneimine as matrix were used for the immobilization of Candida antarctica lipase. The isoelectric point of PA-M is 10.6, and the hydrophobicity of PA-M was indicated using naphthalene. Optimization of conditions showed that the maximal loading of lipase on PA-M reached 230.2 mg g? 1 at pH 9.0 and 35°C. An increased buffer concentration had no effect on the activity of lipase but decreased the amount of lipase adsorbed. Simulation with Langmuir and Freundlich isotherms demonstrated that the adsorption of lipase on PA-M was thermodynamically favorable. Covalent crosslinking of the lipase adsorbed extended the pH range and increased the optimal temperature of the lipase activity. The physically adsorbed lipase (P-lipase) and the covalently immobilized derivative (C-lipase) retained more than 75% and 85% of their initial activity, respectively, after 10 cycles of usage. The half-lives of P-lipase and C-lipase at 50°C were 15.70 and 27.67 times higher than that of the free enzyme, respectively. Compared to P-lipase, covalent immobilization obviously reduced the catalytic efficiency and activation energy of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号