首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
  2020年   1篇
  2013年   1篇
  2011年   2篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT. We investigated the feeding of the small heterotrophic dinoflagellates (HTDs) Oxyrrhis marina , Gyrodinium cf. guttula , Gyrodinium sp., Pfiesteria piscicida , and Protoperidinium bipes on marine heterotrophic bacteria. To investigate whether they are able to feed on bacteria, we observed the protoplasm of target heterotrophic dinoflagellate cells under an epifluorescence microscope and transmission electron microscope. In addition, we measured ingestion rates of the dominant heterotrophic dinoflagellate, Gyrodinium spp., on natural populations of marine bacteria (mostly heterotrophic bacteria) in Masan Bay, Korea in 2006–2007. Furthermore, we measured the ingestion rates of O. marina , G . cf. guttula , and P. piscicida on bacteria as a function of bacterial concentration under laboratory conditions. All HTDs tested were able to feed on a single bacterium. Oxyrrhis marina and Gyrodinium spp. intercepted and then ingested a single bacterial cell in feeding currents that were generated by the flagella of the predators. During the field experiments, the ingestion rates and grazing coefficients of Gyrodinium spp. on natural populations of bacteria were 14–61 bacteria/dinoflagellate/h and 0.003–0.972 day−1, respectively. With increasing prey concentration, the ingestion rates of O. marina , G . cf. guttula , and P. piscicida on bacteria increased rapidly at prey concentrations of ca 0.7–2.2 × 106 cells/ml, but increased only slowly or became saturated at higher prey concentrations. The maximum ingestion rate of O. marina on bacteria was much higher than those of G . cf. guttula and P. piscicida . Bacteria alone supported the growth of O. marina . The results of the present study suggest that some HTDs may sometimes have a considerable grazing impact on populations of marine bacteria, and that bacteria may be important prey.  相似文献   
2.
内蒙古典型草原生态系统健康评价   总被引:11,自引:4,他引:7  
以草原生态系统中的植物-土壤-大气界面的关键生态过程为基础,结合典型草原生态系统的群落特征及其退化演替模式,并考虑水分因子的限制作用,在确定生态系统健康评价模式(参照)系统和基况评价指标的同时,建立了典型草原生态系统健康评价的CVOR综合指数的计算模型和方法.通过分析放牧压力和围封保育对内蒙古典型草原生态系统健康的影响,检验了CVOR综合指数的可行性,可为草原生态系统健康管理提供一个综合、简单、准确、宜行的评价方法.  相似文献   
3.
Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi‐trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta‐analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long‐term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio‐economic benefits.  相似文献   
4.
Marine raphidophytes are common red tide organisms that are distributed worldwide. They are known to be harmful to other plankton and fish and have often caused large-scale fish mortality in many countries. Thus, the population dynamics of raphidophytes is a critical concern for scientists, the aquaculture industry, and government officers from many countries. Raphidophyte growth and mortality should be investigated to understand bloom dynamics. Raphidophytes were thought to be exclusively autotrophic organisms. However, several recent studies have revealed that raphidophytes are able to feed on heterotrophic and autotrophic bacteria, i.e. raphidophytes are mixotrophic algae. Further, high-resolution video microscopy has revealed the mechanism by which raphidophytes feed on bacteria, which involves capturing prey cells in the mucus excreted by mucocysts and engulfing the cells through mucocysts. These discoveries may influence the conventional view on both raphidophyte bloom dynamics and plankton energy flow and carbon cycling. In the present study, I review prey, feeding mechanisms, and ingestion rates of mixotrophic marine raphidophytes. In addition, I examine the ecological significance of raphidophyte mixotrophy.  相似文献   
5.
放牧胁迫下若尔盖高原沼泽退化特征及其影响因子   总被引:4,自引:0,他引:4  
李珂  杨永兴  杨杨  韩大勇 《生态学报》2011,31(20):5956-5969
根据原生和退化沼泽水体、植被与土壤信息,将放牧胁迫下若尔盖高原沼泽划分为5个等级,即原始沼泽、轻度退化、中度退化、重度退化和极度退化沼泽,系统地研究了若尔盖高原沼泽的退化特征及其影响因子。沼泽退化特征表现为:退化沼泽水体总氮含量较高,硝态氮、总磷含量以及碱度、矿化度随沼泽退化程度加剧而上升。退化沼泽物种丰富度增加,群落组成和结构趋于多样化;群落水分生态型结构变化明显,中生植物逐渐取代沼生植物优势地位;沿沼泽退化梯度,植被演替速率降低。沼泽退化序列上,土壤含水率、毛管孔隙度、全氮含量降低,土壤容重、全磷和全钾含量上升;土壤垂直剖面上,退化沼泽较原始沼泽和轻度退化沼泽全量养分含量变化大,并且,全氮和全磷含量具有表聚性。退化沼泽环境指标PCA分析显示,沼泽退化受土壤养分和水分含量的影响较大。  相似文献   
6.
Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red‐tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号