首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   12篇
  2013年   11篇
  2012年   4篇
  2011年   3篇
  2010年   9篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   2篇
  1999年   3篇
  1996年   2篇
  1986年   1篇
  1984年   2篇
排序方式: 共有103条查询结果,搜索用时 46 毫秒
1.
2.
Glucosylceramides (GlcCer), glucose‐conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi‐organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated ‘gcs‐1’) were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs‐1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild‐type plants. However, gcs‐1 calli, in contrast to wild‐type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ‐specific cell differentiation, calli from gcs‐1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs‐1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild‐type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild‐type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell‐type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.  相似文献   
3.
The accumulation of reactive aldehydes is implicated in the development of several disorders. Aldehyde dehydrogenases (ALDHs) detoxify aldehydes by oxidizing them to the corresponding carboxylic acids. Among the 19 human ALDHs, ALDH3A2 is the only known ALDH that catalyzes the oxidation of long-chain fatty aldehydes including C16 aldehydes (hexadecanal and trans-2-hexadecenal) generated through sphingolipid metabolism. In the present study, we have identified that ALDH3B1 is also active in vitro toward C16 aldehydes and demonstrated that overexpression of ALDH3B1 restores the sphingolipid metabolism in the ALDH3A2-deficient cells. In addition, we have determined that ALDH3B1 is localized in the plasma membrane through its C-terminal dual lipidation (palmitoylation and prenylation) and shown that the prenylation is required particularly for the activity toward hexadecanal. Since knockdown of ALDH3B1 does not cause further impairment of the sphingolipid metabolism in the ALDH3A2-deficient cells, the likely physiological function of ALDH3B1 is to oxidize lipid-derived aldehydes generated in the plasma membrane and not to be involved in the sphingolipid metabolism in the endoplasmic reticulum.  相似文献   
4.
Chemotaxis induction is a major effect evoked by stimulation of the chemokine receptor CXCR4 with its sole ligand CXCL12. We now report that treatment of CHP-100 human neuroepithelioma cells with the glucosylceramide synthase (GCS) inhibitor DL-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol inhibits CXCR4-dependent chemotaxis. We provide evidence that the phenomenon is not due to unspecific effects of the inhibitor employed and that inhibition of GCS neither affects total or plasmamembrane CXCR4 expression, nor CXCL12-induced Ca(2+) mobilization. The effects of the GCS inhibitor on impairment of CXCL12-induced cell migration temporally correlated with a pronounced downregulation of neutral glycosphingolipids, particularly glucosylceramide, and with a delayed and more moderate downregulation of gangliosides; moreover, exogenously administered glycosphingolipids allowed resumption of CXCR4-dependent chemotaxis. Altogether our results provide evidence, for the first time, for a role glycosphingolipids in sustaining CXCL12-induced cell migration.  相似文献   
5.
Sphingolipids containing very long acyl chains are abundant in certain specialized tissues and minor components of plasma membranes in most mammalian cells. There are cellular processes in which these sphingolipids are required, and the function seems to be mediated through sphingolipid-rich membrane domains. This study was conducted to explore how very long acyl chains of sphingolipids influence their lateral distribution in membranes. Differential scanning calorimetry showed that 24:0- and 24:1-sphingomyelins, galactosylceramides and glucosylceramides exhibited complex thermotropic behavior and partial miscibility with palmitoyl sphingomyelin. The Tm was decreased by about 20 °C for all 24:1-sphingolipids compared to the corresponding 24:0-sphingolipids. The ability to pack tightly with ordered and extended acyl chains is a necessity for membrane lipids to partition into ordered domains in membranes and thus the 24:1-sphingolipids appeared less likely to do so. Fluorescence quenching measurements showed that the 24:0-sphingolipids formed ordered domains in multicomponent membranes, both as the only sphingolipid and mixed with palmitoyl sphingomyelin. These domains had a high packing density which appeared to hinder the partitioning of sterols into them, as reported by the fluorescent cholesterol analog cholestatrienol. 24:0-SM was, however, better able to accommodate sterol than the glycosphingolipids. The 24:1-sphingolipids could, depending on head group structure, either stabilize or disrupt ordered sphingolipid/cholesterol domains. We conclude that very long chain sphingolipids, when present in biological membranes, may affect the physical properties of or the distribution of sterols between lateral domains. It was also evident that not only the very long acyl chain but also the specific molecular structure of the sphingolipids was of importance for their membrane properties.  相似文献   
6.
Glycosphingolipids are organizational building blocks of plasma membranes that participate in key cellular functions, such as signaling and cell-to-cell interactions. Glucosylceramide synthase--encoded by the Ugcg gene--controls the first committed step in the major pathway of glycosphingolipid synthesis. Global disruption of the Ugcg gene in mice is lethal during gastrulation. We have now established a Ugcg allele flanked by loxP sites (floxed). When cre recombinase was expressed in the nervous system under control of the nestin promoter, the floxed gene underwent recombination, resulting in a substantial reduction of Ugcg expression and of glycosphingolipid ganglio-series levels. The mice deficient in Ugcg expression in the nervous system show a striking loss of Purkinje cells and abnormal neurologic behavior. The floxed Ugcg allele will facilitate analysis of the function of glycosphingolipids in development, physiology, and in diseases such as diabetes and cancer.  相似文献   
7.
BACKGROUND: Gaucher disease is the most common of the lysosomal storage disorders. The primary manifestation is the accumulation of glucosylceramide (GL-1) in the macrophages of liver and spleen (Gaucher cells), due to a deficiency in the lysosomal hydrolase glucocerebrosidase (GC). A Gaucher mouse model (D409V/null) exhibiting reduced GC activity and accumulation of GL-1 was used to evaluate adeno-associated viral (AAV)-mediated gene therapy. METHODS: A recombinant AAV8 serotype vector bearing human GC (hGC) was administered intravenously to the mice. The levels of hGC in blood and tissues were determined, as were the effects of gene transfer on the levels of GL-1. Histopathological evaluation was performed on liver, spleen and lungs. RESULTS: Vector administration to pre-symptomatic Gaucher mice resulted in sustained hepatic secretion of hGC at levels that prevented GL-1 accumulation and the appearance of Gaucher cells in the liver, spleen and lungs. AAV administration to older mice with established disease resulted in normalization of GL-1 levels in the spleen and liver and partially reduced that in the lung. Analysis of the bronchoalveolar lavage fluid (BALF) from treated mice showed significant correction of the abnormal cellularity and cell differentials. No antibodies to the expressed hGC were detected following a challenge with recombinant enzyme suggesting the animals were tolerized to human enzyme. CONCLUSIONS: These data demonstrate the effectiveness of AAV-mediated gene therapy at preventing and correcting the biochemical and pathological abnormalities in a Gaucher mouse model, and thus support the continued consideration of this vector as an alternative approach to treating Gaucher disease.  相似文献   
8.
Treatment of Gaucher disease with an enzyme inhibitor   总被引:5,自引:0,他引:5  
The hypothesis is offered predicting that Caucher patients could be treated with a drug that slows the synthesis of glucosylceramide, the lipid that accumulates in this disorder. The present therapeutic approach involves augmenting the defective enzyme, glucosylceramide -glucosidase, with exogenous -glucosidase isolated from human tissue. This spectacularly expensive mode of treatment should be replaceable with a suitable enzyme inhibitor that simply slows formation of the lipid and matches the rate of synthesis with the rate of the defective, slowly working -glucosidase. Several drugs that possess this ability are available, the best known of which is 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a designer inhibitor that resembles the synthase's substrate and product. PDMP has been found to be effective in mice, rats, fish, and a wide variety of cultured cells. Its use, at suitable dosages, seems to be harmless, although long-term tests have not been made. The lack of suitable animal models of Gaucher disease has made it difficult to test the hypothesis adequately, but PDMP does rapidly lower the levels of glucosylceramide in normal animal tissues and the animals evidently do well with the lowered levels of glucosylceramide and its more complex glycolipid metabolites.Abbreviations PDMP 1-phenyl-2-decanoylamino-3-morpholino-1-propanol - GlcCer glucosylceramide - i.p. intraperitoneal  相似文献   
9.
The sphingolipidoses are a group of inherited lysosomal storage diseases in which sphingolipids accumulate due to the defective activity of one or other enzymes involved in their degradation. For most of the sphingolipidoses, little is known about the molecular mechanisms that lead to disease, which has negatively impacted attempts to develop therapies for these devastating human diseases. Use of both genetically-modified animals, ranging from mice to larger mammals, and of novel cell culture systems, is of utmost importance in delineating the molecular mechanisms that cause pathophysiology, and in providing tools that enable testing the efficacy of new therapies. In this review, we discuss eight sphingolipidoses, namely Gaucher disease, Fabry disease, metachromatic leukodystrophy, Krabbe disease, Niemann–Pick diseases A and B, Farber disease, GM1 gangliosidoses, and GM2 gangliosidoses, and describe the tools that are currently available for their study. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   
10.
Dietary glucosylceramide improves the skin barrier function. We used a microarray system to analyze the mRNA expression in SDS-treated dorsal skin of the hairless mouse to elucidate the molecular mechanisms involved. The transepidermal water loss of mouse skin was increased by the SDS treatment, this increase being significantly reduced by a prior oral administration of glucosylceramides. The microarray-evaluated mRNA expression ratio showed a statistically significant increase in the expression of genes related to the cornified envelope and tight junction formation when compared with all genes in the glucosylceramide-fed/SDS-treated mouse skin. We then examined the contribution of glucosylceramide metabolites to the tight junction formation of cultured keratinocytes. The SDS treatment of cultured keratinocytes significantly decreased the transepidermal electrical resistance, this decrease being significantly ameliorated in the presence of sphingosine or phytosphingosine, the major metabolites of glucosylceramide. These results suggest that an oral administration of glucosylceramide improved the skin barrier function by up-regulating genes associated with both the cornified envelope and tight junction formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号