首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2008年   5篇
  2007年   1篇
  2003年   1篇
  1999年   3篇
  1998年   1篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
1.
2.
The benefits of flocking to prey species, whether through collective vigilance,dilution of risk, or predator confusion, depend on flock members respondingin a coordinated way to attack. We videotaped sparrowhawks attackingredshank flocks to determine if there were differences in thetiming of escape flights between flock members and the factorsthat might affect any differences. Sparrowhawks are surpriseshort-chase predators, so variation in the time taken to takeflight on attack is likely to be a good index of predation risk.Most birds in a flock flew within 0.25 s of the first bird flying,and all birds were flying within 0.7 s. Redshanks that werevigilant, that were closest to the approaching raptor, and thatwere close to their neighbors took flight earliest within aflock. Birds in larger flocks took longer, on average, to takeflight, measured from the time that the first bird in the flockflew. Most birds took flight immediately after near neighbors tookoff, but later flying birds were more likely to fly immediatelyafter more distant neighbors took flight. This result, alongwith the result that increased nearest neighbor distance increasedflight delay, suggests that most redshanks flew in responseto conspecifics flying. The results strongly suggest that thereis significant individual variation in predation risk withinflocks so that individuals within a flock will vary in benefitsthat they gain from flocking.  相似文献   
3.
1.  In a seasonal environment, subcutaneous energy reserves of resident animals often increase in winter and decline again in summer reflecting gradual seasonal changes in their fattening strategies. We studied changes in body reserves of wintering great tits in relation to their dominance status under two contrasting temperature regimes to see whether individuals are capable of optimizing their body mass even under extreme environmental conditions.
2.  We predicted that dominant individuals will carry a lesser amount of body reserves than subordinate great tits under mild conditions and that the body reserves of the same dominant individuals will increase and exceed the amount of reserves of subordinates under conditions of extremely low ambient temperatures, when ambient temperature dropped down to −37 °C.
3.  The results confirmed the predictions showing that dominant great tits responded to the rising risk of starvation under low temperatures by increasing their body reserves and this was done at the expense of their safety.
4.  Removal experiments revealed that lower body reserves of subordinate flock members are due to the increased intraspecific competition for food under low ambient temperatures.
5.  Our results also showed that fattening strategies of great tits may change much quicker than previously considered, reflecting an adaptive role of winter fattening which is sensitive to changes in ambient temperatures.  相似文献   
4.
5.
6.
The use and misuse of public information by foraging red crossbills   总被引:6,自引:5,他引:1  
Group foragers may assess patch quality more efficiently bypaying attention to the sampling behavior of group members foragingin the same patch (i.e., using "public information"). To determinewhether red crossbills (Loxia curvirostra) use public informationto aid their patch departure decisions, we conducted experimentsthat compared the sampling behavior of crossbills foraging ona two-patch system (one patch was always empty, one patch containingseeds) when alone, in pairs, and in flocks of three. When foragingalone, crossbills departed from empty patches in a way thatwas qualitatively consistent with energy maximization. We foundevidence for the use of public information when crossbills werepaired with two flock mates, but not when paired with one flockmate. When foraging with two flock mates, crossbills sampledapproximately half the number of cones on the empty patch beforedeparting as compared to when solitary. Furthermore, as expected ifpublic information is used, the variance in both the numberof cones and time spent on the empty patch decreased when crossbillsforaged with two flock mates as compared to when alone. Althoughhigh frequencies of scrounging reduce the availability of publicinformation, scrounging is usually uncommon in crossbills, apparentlybecause they exploit divisible patches. Consequently, publicinformation is likely to be important to crossbills in the wild.We also show that feeding performance is greatly diminishedwhen the feeding performances of flock mates differ. This providesa mechanism that will favor assortative grouping by phenotypewhen phenotypes affect feeding performance, which may in turnpromote speciation in some groups of animals.  相似文献   
7.
Summary We tested two general models of flocking behaviour, namely the antipredation model and foraging efficiency model on mixed-species tit flocks (Parus spp.). After food addition the size of mixed-species flocks was significantly less than in the control samples. In the presence of extra food significantly more birds were observed either in monospecific flocks or solitary, than during the control observations. In the presence of a living predator the birds foraged in larger mixed-specifies flocks than during the control observations. In addition, the social behaviour of Great Spotted Woodpecker, Middle Spotted Woodpecker and Nuthatch shifted to mixed-specific flocking. The size of monospecific flocks was independent of both treatments. The density of birds increased significantly after food addition, while in the predator presence the birds tended to leave the forest. These results support the view that both the antipredation model and foraging efficiency model seem to be valid for mixed-species flocking. However, in the case of monospecific flocks, the territory maintenance could be the most important factor.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号