首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   7篇
  国内免费   4篇
  2023年   2篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  1989年   1篇
排序方式: 共有50条查询结果,搜索用时 93 毫秒
1.
There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free‐living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM communities are impacted by N enrichment and to estimate whether these changes influence decay of litter and humus. We conducted a long‐term experiment in northern Sweden, maintained since 2004, consisting of ambient, low N additions (0, 3, 6, and 12 kg N ha?1 year?1) simulating current N deposition rates in the boreal region, as well as a high N addition (50 kg N ha?1 year?1). Our data showed that long‐term N enrichment impeded mass loss of litter, but not of humus, and only in response to the highest N addition treatment. Furthermore, our data showed that EM fungi reduced the mass of N and P in both substrates during the incubation period compared to when only SAP organisms were present. Low N additions had no effect on microbial community structure, while the high N addition decreased fungal and bacterial biomasses and altered EM fungi and SAP community composition. Actinomycetes were the only bacterial SAP to show increased biomass in response to the highest N addition. These results provide a mechanistic understanding of how anthropogenic N enrichment can influence soil C accumulation rates and suggest that current N deposition rates in the boreal region (≤12 kg N ha?1 year?1) are likely to have a minor impact on the soil microbial community and the decomposition of humus and litter.  相似文献   
2.
Optimizing techniques of impact and consequence assessment are critical when faced with the challenges of reclamation within a damaged or altered ecosystem. Much debate has arisen over an appropriate index to evaluate herbivore and competition effects on restored communities. We assessed concurrent environmental pressures by means of repeated measurements using three common indices of plant performance (biomass, shoot extension, and survival) in conjunction with monitoring for number and timing of plants eaten. Our design incorporated 24 species, representing a range of taxonomic groups and growth forms, planted at low and high densities, inside and outside large‐scale mammal exclosures. We demonstrate that biomass and height measurements are correlated (at both the individual and the combined species levels), whereas the survival index often showed independent information. Using the most conservative measure (survival), we delineate between plant deaths attributed to seasonal effects, competition (some facilitation was apparent), and herbivory (both compensation and loss of fitness were demonstrated). Plant spacing effects depended on the index (response variable) and whether we measured individual or combined species. The survival index rarely showed competition effects. Due to counter facilitation effects, competition was not demonstrated for any index at the combined species level. The comparison of the relative order and magnitude of plants being eaten against impact identified vulnerable and compensating species. Once identified, compensating species may be used sacrificially to buffer damage in new reclamation systems, whereas deterrents may be used around known vulnerable species.  相似文献   
3.
The main aim of this paper was to evaluate the use of OLI spectral data as a tool to assess the steppe vegetation in a conservation context. The field sampling was conducted for two specific areas of treatment (a) an exclosure area and (b) a free grazing area. After testing several vegetation indices (VIs), the optimal results were obtained for the Normalised Difference Vegetation Index (NDVI)‐based aboveground biomass model with r2 = 0.61 and r2 = 0.72 for total and perennial biomass, respectively. No difference between observed and predicted total and perennial biomass was found (p = 0.700 and p = 0.306, respectively). The comparison between the two treatments using the field sampling revealed a significant difference on total plant cover (p = 0.016) and total biomass (p = 0.005), with a plant cover of 50.6% and a biomass of 325.771 kg dry matter per hectare (kg DM ha?1) on average in grazed area and 66.9%, 1,407.869 kg DM ha?1 in exclosure. Finally, a concordance is noted between the results obtained by the NDVI‐based biomass model and the field sampling‐based biomass.  相似文献   
4.
Background: The abundance of white-tailed deer (Odocoileus virginianus) in the eastern United States has escalated during the twentieth century, potentially impacting plant communities.

Methods: We measured understorey plant cover and biomass five years after excluding deer from mature forests of three ecological regions in Mississippi, USA. We extended the significance of P values to 0.10 to detect developing impacts.

Results: Deer impacts were limited and varied by ecological region. We recorded 151 species in cover transects. Consistent exclosure treatment effects were detected in two regions where there was greater cover of two deer forages and less cover of three non-forages. Species richness was greater in exclosures in one region, but otherwise species richness and diversity indices did not differ. We recorded 127 species in biomass quadrats. Exclosure treatment effects on biomass were inconsistent. Out of five species with significant differences, three had more biomass in controls, including two deer forages. Except for greater total biomass in controls of one region, there were no differences by growth form or total vegetation for canopy coverage or biomass. Ordination of community canopy cover demonstrated similarity of paired exclosure and controls.

Conclusions: Exclosure treatment effects on canopy cover and species richness in two regions indicated limited negative impacts from deer foraging. A time frame of more than five years may be required for exclusion to allow recovery of vegetation, even with relatively open canopies and a long growing season.  相似文献   

5.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   
6.
The presence of extra‐local invaders, such as the southern California mule deer (Odocoileus hemionus) on Santa Catalina Island, may contribute to more selective and insidious effects within the unique ecosystems that have evolved in their absence. Studies at the species level may detect effects not noticed in broader, community level vegetation monitoring or help tease apart differences in the level of effect among the various ecological components of an invaded system. In this initial study, we measured the impacts of herbivory by mule deer, a species native to analogous habitats on the adjacent mainland, on size and seed production success for Crocanthemum greenei (island rush‐rose), a federally listed sub‐shrub that is not present on mainland California. We found deer exclusion resulted in an overall increase in stem measurement of 18.8 cm. Exclosure populations exhibited complete seed production success, whereas control populations showed significantly reduced success and exhibited complete failure within 58% of populations. These results show that the introduced mule deer on Santa Catalina Island are negatively affecting a federally threatened plant species. This strongly implies that the current deer management strategy is insufficient, if one of its goals is biodiversity and endemic species conservation.  相似文献   
7.
丁小慧  宫立  王东波  伍星  刘国华 《生态学报》2012,32(15):4722-4730
放牧通过畜体采食、践踏和排泄物归还影响草地群落组成、植物形态和土壤养分,植物通过改变养分利用策略适应环境变化。通过分析呼伦贝尔草原放牧和围封样地中的群落植物和土壤的碳氮磷养分及化学计量比,探讨放牧对生态系统化学计量学特征和养分循环速率的影响机制。结果如下:(1)群落尺度上,放牧和围封草地植物叶片C、N和P的含量没有显著差异;但是在种群尺度上,放牧草地植物叶片N含量显著高于围封草地;(2)放牧草地土壤全C、全N、有机C、速效P含量,低于围封草地,硝态N含量高于围封草地;土壤全P和铵态N指标没有显著差异;(3)放牧草地植物C∶N比显著低于围封草地,植物残体分解速率较快,提高了生态系统养分循环速率。  相似文献   
8.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
9.
为明确围栏封育对温带典型草原群落物种种间关系的影响, 运用方差比率法、基于2 × 2列联表的χ2检验、Ochiai指数、Spearman相关分析, 对位于内蒙古锡林郭勒盟太仆寺旗封育6年的围封样地及围栏外样地的主要优势种及伴生种进行了种间关联和相关性分析。同时运用生态位宽度指数分析围栏内外物种对环境资源的利用能力及种间竞争情况。结果表明: 1) 基于2 × 2列联表的χ2检验结果表明围栏内9个种对显著正联结, 4个种对显著负联结(p ≤ 0.05), 围栏外有19个种对显著正联结, 8个种对显著负联结; Spearman秩相关分析表明围栏内有10个种对显著正相关, 16个种对显著负相关, 围栏外有12个种对显著正相关, 30个种对显著负相关。χ2检验和Spearman检验结果表明围栏内群落处于稳定发展状态, 而围栏外群落处于退化阶段。2)围栏内外的优势种Ochiai指数都较高, 但χ2检验并不显著, 表明优势种之间的关联程度高, 但存在相对独立的分布格局。3)围栏内主要优势种的生态位宽度大于围栏外, 说明围栏封育保护了主要优势种的生长。  相似文献   
10.
Aims In this study, we examine two common invasion biology hypotheses—biotic resistance and fluctuating resource availability—to explain the patterns of invasion of an invasive grass, Microstegium vimineum.Methods We used 13-year-old deer exclosures in Great Smoky Mountains National Park, USA, to examine how chronic disturbance by deer browsing affects available resources, plant diversity, and invasion in an understory plant community. Using two replicate 1 m 2 plots in each deer browsed and unbrowsed area, we recorded each plant species present, the abundance per species, and the fractional percent cover of vegetation by the cover classes: herbaceous, woody, and graminoid. For each sample plot, we also estimated overstory canopy cover, soil moisture, total soil carbon and nitrogen, and soil pH as a measure of abiotic differences between plots.Important findings We found that plant community composition between chronically browsed and unbrowsed plots differed markedly. Plant diversity was 40% lower in browsed than in unbrowsed plots. At our sites, diversity explained 48% and woody plant cover 35% of the variation in M. vimineum abundance. In addition, we found 3.3 times less M. vimineum in the unbrowsed plots due to higher woody plant cover and plant diversity than in the browsed plots. A parsimonious explanation of these results indicate that disturbances such as herbivory may elicit multiple conditions, namely releasing available resources such as open space, light, and decreasing plant diversity, which may facilitate the proliferation of an invasive species. Finally, by testing two different hypotheses, this study addresses more recent calls to incorporate multiple hypotheses into research attempting to explain plant invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号