首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   841篇
  免费   66篇
  国内免费   71篇
  2023年   9篇
  2022年   1篇
  2021年   12篇
  2020年   29篇
  2019年   17篇
  2018年   20篇
  2017年   25篇
  2016年   24篇
  2015年   21篇
  2014年   32篇
  2013年   45篇
  2012年   45篇
  2011年   23篇
  2010年   21篇
  2009年   23篇
  2008年   35篇
  2007年   31篇
  2006年   56篇
  2005年   39篇
  2004年   17篇
  2003年   21篇
  2002年   45篇
  2001年   33篇
  2000年   32篇
  1999年   15篇
  1998年   22篇
  1997年   12篇
  1996年   25篇
  1995年   14篇
  1994年   26篇
  1993年   31篇
  1992年   31篇
  1991年   8篇
  1990年   31篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1986年   27篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1974年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有978条查询结果,搜索用时 15 毫秒
1.
Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long‐term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal‐scale monitoring records from north temperate‐subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce , (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce . Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio‐temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate‐subarctic regions.  相似文献   
2.
The potential importance of the six major emergent and floating-leaved macrophyte species in recycling of sediment phosphorus in the Loosdrecht lakes was studied. Representative plant samples were collected at the time of maximum biomass, and analysed for biomass and carbon, nitrogen and phosphorus contents. Species cover was determined by aerial photography.Total cover in the seven lakes studied ranged between 2 and 26 percent. For the four main species, biomass per unit area increased with lake trophic status. Consistent differences in C, N and P contents per unit biomass were not observed. Although cover values were small, significant amounts of C, N and P were contained in the macrophytes when compared with maximum sestonic content.Potential P loads from macrophyte decay were calculated. In Lake Loosdrecht, the P load represented 15 percent of current external P inputs. The potential importance of macrophyte decay to P recycling in the other lakes is greater.Decay of macrophyte species at the end of the growing season appears to affect autumnal nutrient and chlorophyll a levels in the water column of some lakes. The re-establishment of submerged species following lake restoration may increase the importance of this pathway in the lakes.  相似文献   
3.
The least squares estimator of a linear regression coefficient L will give an overall expression for the change in with x. In fresh water ecology, however, subgroups, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaSGaci% 4Aaaaa!37BE!\[P\operatorname{k}\], of a parent population may have slopes which differ from the overall slope, L. By constructing frequency histograms for the set of angles: Arctang % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4uaSGaam% yAaiaadQgaaaa!38AE!\[\operatorname{S} ij\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4uaSGaam% yAaiaadQgaaaa!38AE!\[\operatorname{S} ij\]= para sa y and x% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadM% faliaadMgakiabgkHiTiaadMfaliaadQgakiaacMcacaGGVaGaaiik% aiaadIhaliaadMgakiabgkHiTiaadIhaliaadQgakiaacMcaaaa!42F0!\[(Yi - Yj)/(xi - xj)\], i < j, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaSGaam% yAaOGaeyiyIKRaamiEaSGaamOAaaaa!3BAB!\[xi \ne xj\], peaks in the distribution may be identified and related to ecological phenomenon. To identify peaks we fit Gaussian distributions to the frequency histograms. For a set consisting of 142 observations of chlorophyll-a and total phosphorus (nutrient) concentrations (TP) from 16 lakes we found four Gaussian peaks corresponding to four subgroups, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaSGaci% 4Aaaaa!37BE!\[P\operatorname{k}\]k = 1,4. One group identified a response of chl-a to changes in TP which correspond approximately to the average slope found by least square regression (the slope was 0.49). The second group consisted of steeper response than the average (1.28). A third group showed that there is an enhanced proportion of cases where chl-a does not respond to TP (zero slope, all the three deep lakes > 10 m, included in the date set contributed to this group). The size of the last group, spanning a wide range of slopes, suggested that about 30% of the inter annual changes in chl-a is unrelated to TP. The results are compared to result obtained by simple least squares regression and to the Theil non-parametric slope estimator.  相似文献   
4.
Much of the Baltic Sea is currently classified as ‘affected by eutrophication’. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50–100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long‐term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112‐year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid‐1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long‐term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large‐scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem‐based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.  相似文献   
5.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   
6.
Manny  B. A.  Johnson  W. C.  Wetzel  R. G. 《Hydrobiologia》1994,279(1):121-132
Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y–1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m–2 y–1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y–1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m–3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.Contribution 824 of the National Fisheries Research Center-Great Lakes, 1451 Green Road, Ann Arbor, Michigan 48105, U.S.A. and 722 of the Kellogg Biological Station, Michigan State University.  相似文献   
7.
O'Sullivan  P. E. 《Hydrobiologia》1992,(1):421-434
Palaeolimnological studies of sediments from Slapton Ley and Loe Pool, two coastal freshwater lakes in Southwest England, show that in the period since 1945, they have been eutrophicated by nutrient inputs from intensification of agriculture, but also from sewage effluent. Two simple models have been used to identify the main sources of catchment outputs, and in the case of Slapton Ley, to evaluate historical changes in land use, and their likely effect on lake trophic status.Restoration strategies may also be evaluated using the same models. They suggest that in order to reduce loads on either lake to within OECD permissible limits, not only will all sewage inputs need to be prevented, and non-phosphate detergents used, but also losses from agricultural land must be reduced. This could take the form of the keeping of fewer cattle (the main source of organic nitrogen and phosphorus in both catchments), or the zoning of the respective catchments so that steep slopes close to riparian zones are not used, as at present, for the grazing of livestock.A better option, however, would appear to be the establishment along most of the rivers draining into these lakes, of buffer strips of woodland at least 15 m wide. According to the models, this measure, along with treatment or diversion of sewage effluent, would reduce phosphorus loads upon the lakes to within acceptable limits.  相似文献   
8.
The Trophic Diatom Index: a new index for monitoring eutrophication in rivers   总被引:23,自引:0,他引:23  
A index for monitoring the trophic status of rivers based on diatom composition (‚trophic diatom index’, TDI) has been developed, in response to the National Rivers Authority (England & Wales)'s needs under the terms of the Urban Wastewater Treatment Directive of the European Community. The index is based on a suite of 86 taxa selected both for their indicator value and ease of identification. When tested on a dataset from 70 sites free of significant organic pollution, this index was more highly correlated with aqueous P concentrations than previous diatom indices. However, where there was heavy organic pollution, it was difficult to separate the effects of eutrophication from other effects. For this reason, the value of TDI is supplemented by an indication of the proportion of the sample that is composed of taxa tolerant to organic pollution. The index was tested on the R. Browney, N-E. England, above and below a major sewage discharge. TDI values indicated that the effect of inorganic nutrients on the river downstream of the discharge was slight as the river was already nutrient-rich, but there was a large increase in the proportion of organic pollution-tolerant taxa. This indicates that the river was already so eutrophic upstream of the discharge that tertiary treatment to remove P would not be effective unless other aspects of the discharge were also improved.  相似文献   
9.
国际湖沼学的长期研究发现,一个完整的湖泊生态系统应包括底栖食物网和浮游食物网,而营养条件变化会显著改变浅水湖泊中底栖-浮游食物网的结构和功能。为了明晰富营养化对浅水湖泊底栖-浮游耦合食物网结构和功能的影响,以浅水草型湖泊——白洋淀为研究区,运用野外监测和ECOSIM与ECOPATH(Ew E)模型相结合方法,构建白洋淀底栖-浮游耦合食物网的概念模型,模拟1982—2011年间富营养化对白洋淀底栖路径和浮游路径的结构和功能影响:(1)野外监测的结果表明,从1999年至今白洋淀一直处于富营养化状态;(2)Ew E模型模拟结果表明1982—2006年,总生物量呈下降趋势,下降比例达66.38%;能流路径从以底栖路径为主转变为以浮游路径为主;(3)运用Pearson相关分析,结果表明:浮游植物与TN(r=0.67,P0.01)和TP(r=0.37,P0.05)呈显著正相关,而底栖藻类和大型沉水植物与TN(r=0.77,P0.01;r=0.67,P0.01)和TP(r=0.54,P0.01;r=0.36,P0.05)呈显著负相关。富营养化是白洋淀底栖初级和次级生产力向浮游初级和次级生产力转变的主要驱动力。采用科学的方法准确评估富营养化对湖泊底栖-浮游耦合食物网结构和功能的影响,可为湖泊生态系统管理提供技术和方法支持。  相似文献   
10.
1. The main focus of this study was to investigate the effects of single and multiple moderate doses of lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) on eutrophic hardwater lakes. This information would contribute to strategies to manage phytoplankton and macrophyte biomass in eutrophic lakes.
2. Water chemistry and biota were monitored for up to 7 years after initial lime treatment and results were compared with reference systems.
3. Complementary studies investigated the effect of lime on macrophytes in ponds, irrigation canals and microcosm experiments.
4. When water pH was kept within its natural range (≤ 10), single and multiple lime applications to lakes and ponds controlled macrophyte biomass, without negatively affecting invertebrate communities.
5. Single lime treatments at moderate dosages of lakes and ponds resulted in variable and mostly temporary changes in chlorophyll a (chl a ) and phosphorus (P) concentration. Although sediment P release was reduced in single-dose lakes during the first winter following treatment, reductions appeared temporary.
6. Multiple treatments of lakes and ponds were effective at reducing both chl a and P concentrations over longer periods. Mean winter P release rate was also reduced after initial treatment.
7. In laboratory studies, sediment cores were incubated with eight different treatments to assess P release. Redox-sensitive treatments were no more effective at lowering total P concentration in overlying water than some redox-insensitive treatments. Lime reduced total P concentrations, but was not as effective as treatments with alum.
8. The use of lime in managing macrophyte and phytoplankton biomass in shallow, hardwater lakes and ponds may be preferable over other treatments, because lime is economical and non-toxic as long as pH is kept within a natural range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号