首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2009年   2篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Obtaining detailed structural models of disordered states of proteins under nondenaturing conditions is important for a better understanding of both functional intrinsically disordered proteins and unfolded states of folded proteins. Extensive experimental characterization of the drk N-terminal SH3 domain unfolded state has shown that, although it appears to be highly disordered, it possesses significant nonrandom secondary and tertiary structure. In our previous attempts to generate structural models of the unfolded state using the program ENSEMBLE, we were limited by insufficient experimental restraints and conformational sampling. In this study, we have vastly expanded our experimental restraint set to include 1H-15N residual dipolar couplings, small-angle X-ray scattering measurements, nitroxide paramagnetic relaxation enhancements, O2-induced 13C paramagnetic shifts, hydrogen-exchange protection factors, and 15N R2 data, in addition to the previously used nuclear Overhauser effects, amino terminal Cu2+-Ni2+ binding paramagnetic relaxation enhancements, J-couplings, chemical shifts, hydrodynamic radius, and solvent accessibility restraints. We have also implemented a new ensemble calculation methodology that uses iterative conformational sampling and seeks to calculate the simplest possible ensemble models. As a result, we can now generate ensembles that are consistent with much larger experimental data sets than was previously possible. Although highly heterogeneous and having broad molecular size distributions, the calculated drk N-terminal SH3 domain unfolded-state ensembles have very different properties than expected for random or statistical coils and possess significant nonnative α-helical structure and both native-like and nonnative tertiary structure.  相似文献   
2.
Site‐directed spin labeling in combination with paramagnetic relaxation enhancement (PRE) measurements is one of the most promising techniques for studying unfolded proteins. Since the pioneering work of Gillespie and Shortle (J Mol Biol 1997;268:158), PRE data from unfolded proteins have been interpreted using the theory that was originally developed for rotational spin relaxation. At the same time, it can be readily recognized that the relative motion of the paramagnetic tag attached to the peptide chain and the reporter spin such as 1HN is best described as a translation. With this notion in mind, we developed a number of models for the PRE effect in unfolded proteins: (i) mutual diffusion of the two tethered spheres, (ii) mutual diffusion of the two tethered spheres subject to a harmonic potential, (iii) mutual diffusion of the two tethered spheres subject to a simulated mean‐force potential (Smoluchowski equation); (iv) explicit‐atom molecular dynamics simulation. The new models were used to predict the dependences of the PRE rates on the 1HN residue number and static magnetic field strength; the results are appreciably different from the Gillespie–Shortle model. At the same time, the Gillespie–Shortle approach is expected to be generally adequate if the goal is to reconstruct the distance distributions between 1HN spins and the paramagnetic center (provided that the characteristic correlation time is known with a reasonable accuracy). The theory has been tested by measuring the PRE rates in three spin‐labeled mutants of the drkN SH3 domain in 2M guanidinium chloride. Two modifications introduced into the measurement scheme—using a reference compound to calibrate the signals from the two samples (oxidized and reduced) and using peak volumes instead of intensities to determine the PRE rates—lead to a substantial improvement in the quality of data. The PRE data from the denatured drkN SH3 are mostly consistent with the model of moderately expanded random‐coil protein, although part of the data point toward a more compact structure (local hydrophobic cluster). At the same time, the radius of gyration reported by Choy et al. (J Mol Biol 2002;316:101) suggests that the protein is highly expanded. This seemingly contradictory evidence can be reconciled if one assumes that denatured drkN SH3 forms a conformational ensemble that is dominated by extended conformations, yet also contains compact (collapsed) species. Such behavior is apparently more complex than predicted by the model of a random‐coil protein in good solvent/poor solvent.  相似文献   
3.
Due to their dynamic ensemble nature and a deficiency of experimental restraints, disordered states of proteins are difficult to characterize structurally. Here, we have expanded upon our previous work on the unfolded state of the Drosophila drk N-terminal (drkN) SH3 domain with our program ENSEMBLE, which assigns population weights to pregenerated conformers in order to calculate ensembles of structures whose properties are collectively consistent with experimental measurements. The experimental restraint set has been enlarged with newly measured paramagnetic relaxation enhancements from Cu(2+) bound to an amino terminal Cu(2+)-Ni(2+) binding (ATCUN) motif as well as nuclear Overhauser effect (NOE) and hydrogen exchange data from recent studies. In addition, two new pseudo-energy minimization algorithms have been implemented that have dramatically improved the speed of ENSEMBLE population weight assignment. Finally, we have greatly improved our conformational sampling by utilizing a variety of techniques to generate both random structures and structures that are biased to contain elements of native-like or non-native structure. Although it is not possible to uniquely define a representative structural ensemble, we have been able to assess various properties of the drkN SH3 domain unfolded state by performing ENSEMBLE minimizations of different conformer pools. Specifically, we have found that the experimental restraint set enforces a compact structural distribution that is not consistent with an overall native-like topology but shows preference for local non-native structure in the regions corresponding to the diverging turn and the beta5 strand of the folded state and for local native-like structure in the region corresponding to the beta6 and beta7 strands. We suggest that this approach could be generally useful for the structural characterization of disordered states.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号