首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
排序方式: 共有24条查询结果,搜索用时 724 毫秒
1.
Spectrophotometric assay for ornithine decarboxylase   总被引:11,自引:0,他引:11  
A rapid and sensitive spectrophotometric assay for ornithine decarboxylase is described. It is based on the observation that the product of ornithine decarboxylase, putrescine, reacts with 2,4,6-trinitrobenzenesulfonic acid to give a colored product soluble in 1-pentanol whereas ornithine does not. The amount of putrescine produced by the enzyme was determined by measuring the absorbance of the 1-pentanol extract of the reaction mixture at 420 nm, and by comparing the results to those obtained by the trapping of 14CO2 and by HPLC assays. The three assays were found to be equivalent in sensitivity, with the spectrophotometric assay having the advantages of being relatively rapid, requiring only common laboratory equipment, and not requiring the use of radioactive isotopes.  相似文献   
2.
Polyamines (PAs) are involved in plant response to abiotic and biotic stresses, however, their role in biochemical insect-plant interactions is not clear. Therefore, we compared the involvement of polyamines and key enzymes of their biosynthesis in gall formation process. The present study had used galls on oak leaves caused by asexual generation (♀♀) of three Cynipidae species, namely Cynips quercusfolii L., Neuroterus numismalis (Fourc.) and N. quercusbaccarum L., as a model. The obtained results indicate that gall formation on oak leaves affected amine content, but intensity of the changes in their levels were strongly dependent on the insect species. Nevertheless the downward trend was dominant among those changes. Changes in the activity of lysine decarboxylase (LDC), tyrosine decarboxylase (TyDC) and ornithine decarboxylase (ODC) usually corresponded with the direction of changes in polyamine contents. Several cases of divergence between changes in amine levels and the rate of their biosynthesis may suggest the involvement of other regulation mechanisms such as: arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) as well as amine oxidases involved in its catabolic pathways. Thus, the future studies on biochemical mechanism of regulation of PAs accumulation during galls formation should be focused on importance of these enzymes.  相似文献   
3.
It has previously been established that the deprotonated amino substituent of the pyrimidine of thiamin diphosphate (ThDP) acts as an internal base to accept the C2H of the thiazolium in ThDP-dependent enzymes. The amino group has also been implicated in assisting the departure of the aldehydic product formed after loss of CO2 from ketoacid substrates. However, the potential role for the pyrimidine amino group in the key decarboxylation step has not been assessed. Oxythiamin contains a hydroxyl group in place of the pyrimidine amino group in thiamin, providing a basis for comparison of reactivity. Lactyl-oxythiamin (LOTh), the conjugate of pyruvic acid and oxythiamin was prepared by condensation of ethyl pyruvate and hydroxyl-protected oxythiamin followed by deprotection and acidic hydrolysis of the ethyl ester. The rate constants observed for the decarboxylation of LOTh in neutral and acidic solutions are about four times smaller than those for the corresponding compound that contains the amino group, lactylthiamin. The difference in reactivity is consistent with the amino group’s participation in facilitating the decarboxylation step by allowing a competitive addition pathway that produces bicarbonate and has implications for the corresponding enzymic reaction.  相似文献   
4.
5.
The short-term polyamine response to inoculation, with tobacco mosaic virus (TMV), of TMV-inoculated NN (hypersensitive) and nn (susceptible) plants of Nicotiana tabacum (L.) cv. Samsun was investigated. Free and conjugated polyamine concentrations, putrescine biosynthesis, evaluated through arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities, and putrescine oxidation, via diamine oxidase (DAO) activity, were analysed during the first 24 h from inoculation. Results were compared with those of mock-inoculated control plants. In NN TMV-inoculated plants undergoing the hypersensitive response (HR), free putrescine and spermidine concentrations had increased after 5 h compared with controls; polyamine conjugates also tended to increase compared with controls. In both virus- and mock-inoculated plants, ADC and ODC activities generally increased whereas DAO activity, which was present in controls, was detectable only in traces in inoculated tissues.
In TMV-infected susceptible plants, free putrescine and spermidine concentrations were lower at 5 h relative to controls, as were polyamine conjugates. No differences were revealed in ADC and ODC activities whereas DAO activity was not detectable. These results further support the hypothesis that polyamines are involved in the response of tobacco to TMV and that, only a few hours after inoculation, the response of hypersensitive plants is distinct from that of susceptible ones.  相似文献   
6.
Two of the five domains in the structure of the ornithine decarboxylase (OrnDC) from Lactobacillus 30a share similar structural folds around the pyridoxal-5''-phosphate (PLP)-binding pocket with the aspartate aminotransferases (AspATs). Sequence comparisons focusing on conserved residues of the aligned structures reveal that this structural motif is also present in a number of other PLP-dependent enzymes including the histidine, dopa, tryptophan, glutamate, and glycine decarboxylases as well as tryptophanase and serine-hydroxymethyl transferase. However, this motif is not present in eukaryotic OrnDCs, the diaminopimelate decarboxylases, nor the Escherichia coli or oat arginine decarboxylases. The identification and comparison of residues involved in defining the different classes are discussed.  相似文献   
7.
Sensing and adapting to acid stress   总被引:5,自引:0,他引:5  
Bacteria and archaea occupy a considerable diversity of niches that vary with respect to the physical conditions. Survival and colonisation requires the capacity to sense, and adapt to, environmental change. In this short review we consider the issues of adaptation to acidic conditions, in particular the mechanisms that might be employed by different bacteria to respond to the specific challenges of their niche. We lay particular emphasis on the protection of the cytoplasm during alterations of the cytoplasmic pH and, in the Gram negative bacteria, on recent work that suggests that protection of the periplasm is critical for survival of exposure to extreme acid. Finally, we discuss potential mechanisms by which pH might be sensed and consider the insights gained from proteins that sense and respond specifically to changes in pH. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
9.
Malonate decarboxylation by crude extracts of Malonomonas rubra was specifically activated by Na+ and less efficiently by Li+ ions. The extracts contained an enzyme catalyzing CoA transfer from malonyl-CoA to acetate, yielding acetyl-CoA and malonate. After about a 26-fold purification of the malonyl-CoA:acetate CoA transferase, an almost pure enzyme was obtained, indicating that about 4% of the cellular protein consisted of the CoA transferase. This abundance of the transferase is in accord with its proposed role as an enzyme component of the malonate decarboxylase system, the key enzyme of energy metabolism in this organism. The apparent molecular weight of the polypeptide was 67,000 as revealed from SDS-polyacrylamide gel electrophoresis. A similar molecular weight was estimated for the native transferase by gel chromatography, indicating that the enzyme exists as a monomer. Kinetic analyses of the CoA transferase yielded the following: pH-optimum at pH 5.5, an apparent Km for malonyl-CoA of 1.9mM, for acetate of 54mM, for acetyl-CoA of 6.9mM, and for malonate of 0.5mM. Malonate or citrate inhibited the enzyme with an apparent Ki of 0.4mM and 3.0mM, respectively. The isolated CoA transferase increased the activity of malonate decarboxylase of a crude enzyme system, in which part of the endogenous CoA transferase was inactivated by borohydride, about three-fold. These results indicate that the CoA transferase functions physiologically as a component of the malonate decarboxylase system, in which it catalyzes the transfer of acyl carrier protein from acetyl acyl carrier protein and malonate to yield malonyl acyl carrier protein and acetate. Malonate is thus activated on the enzyme by exchange for the catalytically important enzymebound acetyl thioester residues noted previously. This type of substrate activation resembles the catalytic mechanism of citrate lyase and citramalate lyase.Abbreviations DTNB 5,5 Dithiobis (2-nitrobenzoate) - MES 2-(N-Morpholino)ethanesulfonic acid - TAPS N-[Tris(hydroxymethyl)-methyl]-3-aminopropanesulfonic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   
10.
Nylon is a polyamide material with excellent performance used widely in the aviation and automobile industries, and other fields. Nylon monomers such as hexamethylene diamine and other monomers are in huge demand. Therefore, in order to expand the methods of nylon production, we tried to develop alternative bio‐manufacturing processes which would make a positive contribution to the nylon industry. In this study, the engineered E. coli‐overexpressing Lysine decarboxylases (LDCs) were used for the bioconversion of l‐lysine to cadaverine. An integrated fermentation and microfiltration (MF) process for high‐level cadaverine production by E. coli was established. Concentration was increased from 87 to 263.6 g/L cadaverine after six batch coupling with a productivity of 3.65 g/L‐h. The cadaverine concentration was also increased significantly from 0.43 g cadaverine/g l‐lysine to 0.88 g cadaverine/g l‐lysine by repeated batch fermentation. These experimental results indicate that coupling the fermentation and membrane separation process could benefit the continuous production of cadaverine at high levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号