首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2010年   2篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
2.
The ability of cells to interact with each other and their surroundings in a co-ordinated manner depends on multiple adhesive interactions between neighbouring cells and their extracellular environment. These adhesive interactions are mediated by a family of cell surface proteins, termed cell adhesion molecules. Fortunately these adhesion molecules fall into distinct families with adhesive interactions varying in strength from strong binding involved in the maintenance of tissue architecture to more transient, less avid, dynamic interactions observed in leukocyte biology. Adhesion molecules are extremely versatile cell surface receptors which not only stick cells together but provide biochemical and physical signals that regulate a range of diverse functions, such as cell proliferation, gene expression, differentiation, apoptosis and migration. In addition, like many other cell surface molecules, they have been usurped as portals of entry for pathogens, including prions. How the mechanical and chemical messages generated from adhesion molecules are integrated with other signalling pathways (such as receptor tyrosine kinases and phosphatases) and the role that aberrant cell adhesion plays in developmental defects and disease pathology are currently very active areas of research. This review focuses on the biochemical features that define whether a cell surface molecule can act as an adhesion molecule, and discusses five specific examples of how cell adhesion molecules function as more than just 'sticky’ receptors. The discussion is confined to the signalling events mediated by members of the integrin, cadherin and immunoglobulin gene superfamilies. It is suggested that, by controlling the membrane organization of signalling receptors, by imposing spatial organization, and by regulating the local concentration of cytosolic adapter proteins, intercellular and cell-matrix adhesion is more than just glue holding cells together. Rather dynamic ‘conversations’ and the formation of multi-protein complexes between adhesion molecules, growth factor receptors and matrix macromolecules can now provide a molecular explanation for the long-observed but poorly understood requirement for a number of seemingly distinct cell surface molecules to be engaged for efficient cell function to occur.  相似文献   
3.
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.  相似文献   
4.
5.
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta . Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo . Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells.  相似文献   
6.
Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca2+) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca2+ probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca2+ probes. In response to this demand more red-emitting chemical and FP-based Ca2+-sensitive indicators have been developed since 2009 than in the thirty years before.  相似文献   
7.
8.
9.
The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This competition or prioritization occurs through cellular signalling pathways and the secretion of proteins by adipose tissue (adipokines) and muscle (myokines), putatively regulating their hypertrophy in a reciprocal manner. Further work on the mechanisms underlying cross-talk between brown or white adipocytes and muscle fibres will help to achieve better understanding as a prerequisite to improving the control of body growth and composition in cattle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号