首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7051篇
  免费   910篇
  国内免费   450篇
  2024年   10篇
  2023年   206篇
  2022年   156篇
  2021年   228篇
  2020年   365篇
  2019年   410篇
  2018年   347篇
  2017年   339篇
  2016年   301篇
  2015年   305篇
  2014年   331篇
  2013年   475篇
  2012年   299篇
  2011年   276篇
  2010年   259篇
  2009年   406篇
  2008年   418篇
  2007年   414篇
  2006年   358篇
  2005年   331篇
  2004年   281篇
  2003年   242篇
  2002年   216篇
  2001年   239篇
  2000年   194篇
  1999年   190篇
  1998年   151篇
  1997年   125篇
  1996年   84篇
  1995年   81篇
  1994年   98篇
  1993年   47篇
  1992年   41篇
  1991年   35篇
  1990年   52篇
  1989年   8篇
  1988年   12篇
  1987年   16篇
  1986年   10篇
  1985年   10篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有8411条查询结果,搜索用时 31 毫秒
1.
2.
Conservation management of the Tasmanian flora is now focusing on non-vascular plants. Major problems include the low level of information on the composition of the flora and the low number of competent specialists available to deal with the plants. Collation of information from literature and from collections in herbaria is required to establish exactly which data are available and their reliability. An environmental domain analysis covering all ecosystems would indicate which environments were under-represented or absent from current reserves and where needs for conservation lie. Within practical time-frames, this process is probably the best method of capturing unknown components of the flora whilst also catering for widespread species and those closely associated with particular environments. It also incorporates regional variability. Minor habitats, which are often floristically rich, and very rare species are best dealt with on an individual basis. Basic research into taxonomy and ecology is paramount. Reservation and conservation management must be based on well-established and maintained databases which are in turn based on a coherent taxonomy and sound biogoographical information. It is only by pursuing an active research programme that the necessary accurate information can be obtained and the success of the management procedures can be gauged.  相似文献   
3.
Recent debate on whether or not mahogany ( Swietenia macrophylla King) is threatened by the international timber trade has focused on the breadth of its range and estimates of the remaining stock of mahogany trees. These data are inadequate to reveal the status of mahogany populations, both because they are incomplete in areal extent and because they do not reveal population parameters such as the existence or density of young trees smaller than commercial size. However, there is sufficient information on the regeneration ecology of mahogany to indicate that under natural conditions this species regenerates in essentially even-aged stands after catastrophic disturbances destroy many or most trees, and, in the case of fires and flooding, saplings and seedlings as well. Adult mahoganies tend to survive these events, and regenerate by shedding seed onto the resulting gaps or clearings. This ecological strategy makes mahogany vulnerable to logging, first because juvenile mahoganies are not found in the understorey, and secondly because logging operations shortcircuit mahogany regeneration processes by selectively removing almost all mahogany seed sources while leaving standing competing vegetation of other species. Listing of mahogany in CITES Appendix II could provide both a mechanism to fill in gaps in information and an incentive to change current practices in favour of silvicultural management to provide for regeneration of this valuable timber species in forests subjected to logging.  相似文献   
4.
The Kahuzi-Biega National Park (KBNP), situated mainly in the Eastern Highlands Ecoregion of the Upper Congo basin, is drained by the Lowa and Ulindi rivers, and some western affluents of Lake Kivu. In this study, the first list of the fish diversity of these systems is provided based on museum collections and complemented, for the Lowa River system and the western Lake Kivu affluents, with recently collected specimens (2013–2017). A total of 118 species are reported from the Lowa basin, 22 from the Ulindi basin and seven from these Lake Kivu affluents. Within the Lowa and Ulindi, respectively, five and one species, all cichlids, have been introduced. Currently, 51 species are reported from within the park, only two of which have been reported from the highlands, i.e., Amphilius kivuensis from the Luha, the source of the Luka River, and Clarias liocephalus from the headwaters of the Lake Kivu’ affluents. With a total of 30 species, Cyprinidae is by far the largest family, representing 25% of the total species diversity of the Lowa basin. It is followed by Mormyridae with 13 species (11%), Alestidae and Mochokidae with 10 species each (8%), Clariidae and Amphiliidae with eight species (7%), and Distichodontidae with six species (5%). Seven new species for science were discovered and 11 species were found to be endemic to the Lowa system. Although further exploration is needed, this underscores the importance of the KBNP in protecting the fish fauna of the Lowa basin but also highlights the park's limited coverage of the fish fauna of the Lowa basin.  相似文献   
5.
Habitat management under the auspices of conservation biological control is a widely used approach to foster conditions that ensure a diversity of predator species can persist spatially and temporally within agricultural landscapes in order to control their prey (pest) species. However, an emerging new factor, global climate change, has the potential to disrupt existing conservation biological control programs. Climate change may alter abiotic conditions such as temperature, precipitation, humidity and wind that in turn could alter the life-cycle timing of predator and prey species and the behavioral nature and strength of their interactions. Anticipating how climate change will affect predator and prey communities represents an important research challenge. We present a conceptual framework—the habitat domain concept—that is useful for understanding contingencies in the nature of predator diversity effects on prey based on predator and prey spatial movement in their habitat. We illustrate how this framework can be used to forecast whether biological control by predators will become more effective or become disrupted due to changing climate. We discuss how changes in predator–prey interactions are contingent on the tolerances of predators and prey species to changing abiotic conditions as determined by the degree of local adaptation and phenotypic plasticity exhibited by species populations. We conclude by discussing research approaches that are needed to help adjust conservation biological control management to deal with a climate future.  相似文献   
6.
Genetic diversity provides populations with the possibility to persist in ever-changing environments, where selective regimes change over time. Therefore, the long-term survival of a population may be affected by its level of genetic diversity. The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate restricted to southeast Mexico. Here, we evaluate the genetic diversity and population structure of this subspecies based on 83 individuals from 31 groups sampled across the distribution range of the subspecies, using 29 microsatellite loci. Our results revealed extremely low genetic diversity (HO = 0.21, HE = 0.29) compared to studies of other A. palliata populations and to other Alouatta species. Principal component analysis, a Bayesian clustering method, and analyses of molecular variance did not detect strong signatures of genetic differentiation among geographic populations of this subspecies. Although we detect small but significant FST values between populations, they can be explained by a pattern of isolation by distance. These results and the presence of unique alleles in different populations highlight the importance of implementing conservation efforts in multiple populations across the distribution range of A. p. mexicana to preserve its already low genetic diversity. This is especially important given current levels of population isolation due to the extreme habitat fragmentation across the distribution range of this primate.  相似文献   
7.
A preliminary analysis of the use by bats of National Trust properties revealed that all 14 resident species have been recorded. Comparison with a national database of records for Britain managed by English Nature (NCC Bat database) showed that the scarcer species are better represented roosting in buildings on Trust properties than in other buildings. In addition, survey of Trust properties has shown that a high proportion of buildings are used by bats. Bats provide unusual wildlife links between buildings, gardens and countryside through which the Trust can promote nature conservation, and resolve conflicts between building or landscape restoration and the bat habitat requirements. The role of the County Bat Groups in survey and promotion of bats on Trust properties is becoming increasingly important, especially if we are able to identify key properties for bats.  相似文献   
8.
There are over one million described invertebrate species on Earth, the majority of which are likely to inhabit the highly biodiverse rain forests around the equator. These are some of the most vulnerable ecosystems on Earth due to the pressures of deforestation and climate change with many of their inhabitants at risk of extinction. Invertebrates play a major role in ecosystem functioning from decomposition and nutrient cycling to herbivory and pollination; however, while our understanding of these roles is improving, we are far from being able to predict the consequences of further deforestation, climate change, and biodiversity loss due to the lack of comparative data and the high proportion of species which remain to be discovered. As we move into an era of increased pressure on old-growth habitats and biodiversity, it is imperative that we understand how changes to invertebrate communities, and the extinction of species, affect ecosystems. Innovative and comprehensive methods that approach these issues are needed. Here, we highlight priorities for future tropical terrestrial invertebrate research such as the efficiency of sustainable land management, exploration of innovative methods for better understanding of invertebrate ecology and behavior, and quantifying the role of invertebrates in ecosystem functioning.  相似文献   
9.
10.
  1. Many organisms contribute to the decomposition of carrion. For arthropods, many studies focus on the necrophagous community, those directly consuming carrion.
  2. Necrophagous arthropods use carrion as a shelter or food source. Therefore, carrion generally increases the abundance and biodiversity of necrophagous species. However, it is unclear if carrion has similar effects on detrital communities.
  3. This study examines changes in community structure and composition of necrophilous and detrital communities over the course of decomposition.
  4. Five pig head carrion were placed at least 7 m apart under cages in temperate mixed forest. Leaf litter was sampled 0 m, 1.5 m, and 3 m from each carrion weekly during summer, and monthly during autumn, until the first frost. Arthropods were extracted from leaf litter by using Berlese funnels.
  5. At the carrion site, necrophagous insects increased in abundance, species richness, and Shannon diversity during decomposition, and all decreased after dry decay.
  6. Detritus arthropods displayed a sharp increase in abundance during advanced decay, decreasing during dry decay, and a general increase over time for species richness and diversity.
  7. In conclusion, carrion can influence the surrounding, non-necrophagous arthropod community, highlighting the need to investigate carrion effects beyond typical necrophagous species to have a more holistic understanding of carrion ecology.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号