首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  国内免费   2篇
  2023年   3篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2012年   4篇
  2009年   6篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1993年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.  相似文献   
2.
Food-web structure mediates dramatic effects of biodiversity loss including secondary and `cascading' extinctions. We studied these effects by simulating primary species loss in 16 food webs from terrestrial and aquatic ecosystems and measuring robustness in terms of the secondary extinctions that followed. As observed in other networks, food webs are more robust to random removal of species than to selective removal of species with the most trophic links to other species. More surprisingly, robustness increases with food-web connectance but appears independent of species richness and omnivory. In particular, food webs experience `rivet-like' thresholds past which they display extreme sensitivity to removal of highly connected species. Higher connectance delays the onset of this threshold. Removing species with few trophic connections generally has little effect though there are several striking exceptions. These findings emphasize how the number of species removed affects ecosystems differently depending on the trophic functions of species removed.  相似文献   
3.
水生生态系统食物网复杂性与多样性的关系   总被引:1,自引:0,他引:1  
李晓晓  杨薇  孙涛  崔保山  邵冬冬 《生态学报》2021,41(10):3856-3864
探索食物网的复杂结构是生态学的中心问题之一。基于构建的黄河口海草床食物网并耦合实际食物网的数据集,整理了包含河口、湖泊、海洋和河流四种水生生态系统类型的48个实际食物网案例。以食物网的节点数反映食物网多样性,物种之间的营养链接数、链接密度和连通度来表示食物网的复杂性,采用营养缩尺模型描述水生生态系统食物网的复杂性特征与节点数的普适性规律。结果表明:所涉及的48个水生生态系统食物网的多样性和复杂性跨度较大,其中,节点数的分布范围为4-124,链接数为3-1830,链接密度为0.75-15.71,连通度为0.06-0.25。不同类型水生生态系统间的连通度存在显著性差异(P=0.01),节点数、链接数、链接密度不存在显著性差异。各类型生态系统的食物网链接数、链接密度均随节点数的增加而增加(R2=0.92,P<0.001和R2=0.82,P<0.001)。湖泊生态系统的连通度随节点数的变化不明显,围绕在0.20附近;而其他3种类型生态系统的食物网连通度随节点数的增加而降低(R2=0.06-0.41,P<0.001)。对全球尺度的水生食物网多样性和复杂性的定量化研究对于提升对食物网的复杂结构的科学认识,从系统尺度探究多样性和复杂性的关系提供数据支撑。  相似文献   
4.
Colocated industries exchange products and by-products in ways reminiscent of the exchange of resources in biological ecosystems. To better understand these "industrial ecosys-tems", we have applied food-web theory to a set of 19 actual and hypothetical eco-industrial parks and integrated biosys-tems. We find a linear relationship between number of industrial tenants and number of linkages among them and connectance values of 0.5 to 0.6 (typical of biological ecosystems). The results may provide initial perspective on designing eco-industrial parks to maximize the utilization of resources and minimize the generation of wastes. Increased connectance in industrial ecosystems, however, does not necessarily imply increased stability or improved environmental performance.  相似文献   
5.
Biological invasions are a key component of global change, and understanding the drivers of global invasion patterns will aid in assessing and mitigating the impact of invasive species. While invasive species are most often studied in the context of one or two trophic levels, in reality species invade communities comprised of complex food webs. The complexity and integrity of the native food web may be a more important determinant of invasion success than the strength of interactions between a small subset of species within a larger food web. Previous efforts to understand the relationship between food web properties and species invasions have been primarily theoretical and have yielded mixed results. Here, we present a synthesis of empirical information on food web connectance and species invasion success gathered from different sources (estimates of food web connectance from the primary literature and estimates of invasion success from the Global Invasive Species Database as well as the primary literature). Our results suggest that higher‐connectance food webs tend to host fewer invaders and exert stronger biotic resistance compared to low‐connectance webs. We argue that while these correlations cannot be used to infer a causal link between food web connectance and habitat invasibility, the promising findings beg for further empirical research that deliberately tests for relationships between food web connectance and invasion.  相似文献   
6.
Species extinction in finite random replicator systems is investigated as a function of within‐species interaction pressure. Extinctions are shown to increase with increased symmetry of among‐species interactions. The proportion of extinct species increases with increased system size. The effect of system connectance is reduced to a variability effect: connectivity geometry appears unimportant as long as closed subspaces are not formed. A small system can be interpreted as a closed subsystem of a larger system, which allows size‐scaling of the interaction pressure. At large interaction pressure, the scaling unifies the proportion of extinct species. At the limit of small within‐species interaction pressure, a small number of species survive, and the proportion of extinct species shows a system size effect. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 689–697.  相似文献   
7.
The increasing frequency and cost of zoonotic disease emergence due to global change have led to calls for the primary surveillance of wildlife. This should be facilitated by the ready availability of remotely sensed environmental data, given the importance of the environment in determining infectious disease dynamics. However, there has been little evaluation of the temporal predictiveness of remotely sensed environmental data for infection reservoirs in vertebrate hosts due to a deficit of corresponding high-quality long-term infection datasets. Here we employ two unique decade-spanning datasets for assemblages of infectious agents, including zoonotic agents, in rodents in stable habitats. Such stable habitats are important, as they provide the baseline sets of pathogens for the interactions within degrading habitats that have been identified as hotspots for zoonotic emergence. We focus on the enhanced vegetation index (EVI), a measure of vegetation greening that equates to primary productivity, reasoning that this would modulate infectious agent populations via trophic cascades determining host population density or immunocompetence. We found that EVI, in analyses with data standardised by site, inversely predicted more than one-third of the variation in an index of infectious agent total abundance. Moreover, in bipartite host occupancy networks, weighted network statistics (connectance and modularity) were linked to total abundance and were also predicted by EVI. Infectious agent abundance and, perhaps, community structure are likely to influence infection risk and, in turn, the probability of transboundary emergence. Thus, the present results, which were consistent in disparate forest and desert systems, provide proof-of-principle that within-site fluctuations in satellite-derived greenness indices can furnish useful forecasting that could focus primary surveillance. In relation to the well-documented global greening trend of recent decades, the present results predict declining infection burden in wild vertebrates in stable habitats; but if greening trends were to be reversed, this might magnify the already upwards trend in zoonotic emergence.  相似文献   
8.
Abstract.
  • 1 Two contrasting hypotheses concerning patterns in food web structure within pitchers of Nepenthes are tested using new information from six species of Nepenthes from Borneo.
  • 2 In general, predictions that webs will be more complex, and the food chains they contain will be longer, the closer they are to the centre of Nepenthes species diversity, are supported.
  • 3 For Nepenthes albomarginata, a widespread species with a distinctive north Bornean form, a contrasting pattern is evident explicable in terms of the morphology of the pitchers and local habitat preferences.
  • 4 General explanations for food web patterns will always be susceptible to exception, reflecting nuances of natural history.
  相似文献   
9.
The relationship between complexity and stability of linearized systems, being characterized by structural parameters like dimension and connectance and interaction strength are investigated by computing relative frequencies of stability. The results are compared with those of other authors. Additionally systems with a special cyclic subsystem structure are investigated. Comparing the stability properties for structured and unstructered systems no increase in stability can be stated if systems are structures in the supposed way.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号