首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   9篇
  国内免费   20篇
  2023年   2篇
  2022年   8篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   7篇
  2000年   1篇
  1999年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
【目的】研究秸秆还田方式对东北黑土理化性质及微生物群落的影响。【方法】试验周期为2019年12月至2021年10月,秸秆还田采用2种方式: 秸秆直接还田+微生物菌剂WJ(strawdirect return+microbial agent WJ;MD),秸秆堆肥还田+微生物菌剂WJ(straw compost return +microbial agent WJ;MC)。分析土壤肥力、酶活和微生物群落。【结果】分析两种方式土壤有机质(SOM)、腐殖酸(HS)和富里酸有机碳(FA-C)含量,发现秸秆直接还田+微生物菌剂WJ比秸秆堆肥还田+微生物菌剂WJ分别增加2.28g/kg、7.82g/kg和5.26g/kg。土壤铵态氮(NH4+-N)、速效磷(AP)略高于秸秆堆肥还田+微生物菌剂WJ,均在6月份达到峰值。胡敏酸有机碳(HA-C)含量下降。此外,土壤脲酶、转化酶、纤维素酶活性和碱性磷酸酶活性对比发现,秸秆直接还田+微生物菌剂WJ比秸秆堆肥还田+微生物菌剂WJ分别高8.55%、15.46%、4.35%和6.19%。高通量测序结果显示,秸秆直接还田+微生物菌剂WJ中细菌和真菌的多样性均比秸秆堆肥还田+微生物菌剂WJ丰富。其中AnaerolineaBacteroidetesPseudomonas为优势细菌,TausoniaMrakiaMrakiella为优势真菌。【结论】秸秆直接还田+微生物菌剂WJ比秸秆堆肥还田+微生物菌剂WJ更有利于土壤有机质、腐殖酸、土壤酶活性和微生物多样性的增加,这说明秸秆添加WJ菌剂直接还田可以减少有机养分的流失,保持田间土壤肥力。  相似文献   
2.
The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta‐analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2O) and methane (CH4) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2O: 50% and CH4: 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta‐analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems.  相似文献   
3.
To what extent some microbial index ratios are suitable for use as early criteria for the level of compost stability during aerobic composting of coniferous sawdust and bark at mesophilic conditions was studied. Evolution of the specific respiration activity (CO2-C/biomass C) and the ratios between some groups of microorganisms were followed as a function of composting time. The specific respiration activity was found to be an early and most reliable indicator of compost stability. The peroxidase and polyphenoloxidase enzyme activity during composting, as well as the composition of newly-formed humus substances were studied. The duration of composting increased the quality of newly-formed humus substances (Ch.a.:Cf.a ratio; Ca-complexed humic acid and resistance of organo-mineral complexes). The quality of humus substances could be used to assess compost stability. However, the results can be applied only under defined conditions.  相似文献   
4.
鼓风对城市污泥好氧堆肥温度变化的影响   总被引:10,自引:1,他引:9  
采用强制通风静态垛和温度反馈自动测控堆肥工艺,研究了鼓风过程对城市污泥好氧堆肥温度的影响。当城市污泥和调理剂比例为1:1时(体积比),处于鼓风口远端(风向远点)各个层次的堆体温度基本上不会随鼓风过程而变化,处于鼓风方向中部(风向中点)、鼓风口近端(风向近点)的堆体,其中层、上层的温度将会下降,平均下降速度分别为0.05℃/min、0.04℃/min,但是温度下降的速率在整个鼓风过程中并不均匀,温度下降速度在0-10min较快,在10-40min较慢;当混合堆料中调理剂含量较低时(3:2),堆体上层温度在鼓风过程中将会上升,上升速率约为0.022-0.05℃/min,中层温度下降,在鼓风开始阶段(0-10min),下降速率较快,约为0.12℃/min,随后变化速率较小,约为0.01℃/min。对于不同调理剂比例的堆体,处于风向远点、中点的下层温度基本不受鼓风作用的影响;处于风向近点的堆体,其下层温度会随着鼓风过程而下降,平均下降速率约为0.025-0.03℃/min。  相似文献   
5.
《Science activities》2013,50(2):48-53
This article provides basic information on how a common species of earthworm, Eisenia fetida, can be used in the biology classroom as well as a discussion of how to establish and care for a vermicompost bin. We discuss ideas for inquiry activities with the organism and provide a sample-guided inquiry that demonstrates how a long-term, theme-based unit involving earthworms can address a wide variety of content from the National Science Education standards.  相似文献   
6.
C/N驱动优势细菌菌群变化影响堆肥碳氮损失和腐殖质合成   总被引:1,自引:0,他引:1  
为了探明C/N如何驱动堆肥过程中优势细菌菌群的变化而影响碳氮损失和腐殖质合成,设置3个C/N处理(20∶1、25∶1和30∶1),以羊粪和玉米秸秆为原料进行堆肥试验。结果表明: 与20∶1处理相比,30∶1和25∶1处理堆肥的碳、氮损失分别降低了33.5%、18.9%和23.6%、10.8%。优势细菌菌群、碳氮损失及有机碳组分的冗余分析表明,高C/N提高了堆肥中固氮细菌的种类和丰度,降低了反硝化细菌的种类和丰度,减少了堆肥过程中的碳氮损失;高C/N促进了木质纤维素类降解菌的生长繁殖,促进了富里酸和胡敏素降解而合成更多胡敏酸,提高了堆肥腐殖化程度。可见,C/N可通过影响堆肥中关键优势细菌菌群而影响堆肥过程和堆肥质量,调节堆肥原料C/N可以调控堆肥中碳氮损失和腐殖质的合成,从而提高堆肥质量并减少堆肥的二次环境污染。  相似文献   
7.
8.
Aims: To evaluate survival of pathogenic strains, Listeria monocytogenes and Salmonella Infantis and a sanitation indicator Enterococcus faecalis in composts at different stages of the composting process and during storage. Methods and Results: The studied pathogenic and indicator strains, originally isolated from compost, were inoculated into compost samples from the various stages of the composting process. During incubation, indigenous microflora diversity was monitored with DGGE analysis. After 90 days of incubation, strain survival was observed in compost sampled before the beginning of the cooling phase, and DGGE analysis demonstrated an increase of microbial diversity up to the cooling phase. However, inoculated strains were not detected in composts after 30, 60 or 90 days of incubation in compost sampled after the start of the cooling phase. Microbial diversity also became stable, and DGGE profiles reached a maximum number of bands at this stage. Conclusions: Strain survival was not observed in stabilized composts. The cooling phase seems to be the turning point for pathogen survival and at this stage the indigenous microflora appeared to play a significant role in suppression. Significance and Impact of the Study: The importance of indigenous microflora in the survival of pathogens in four different composts was demonstrated. Stabilized composts were recommended for spreading on land.  相似文献   
9.
Aims: The microbiota at industrial full‐scale composting plants has earlier been fragmentarily studied with molecular methods. Here, fungal communities from different stages of a full‐scale and a pilot‐scale composting reactors were studied before and after wood ash amendment. Methods and Result: The portion of fungal biomass, determined using phospholipid fatty acid analysis, varied between 6·3% and 38·5% in different composting phases. The fungal internal transcribed spacer (ITS) area was cloned and sequenced from 19 samples representing different stages of the composting processes. Altogether 2986 sequenced clones were grouped into 166 phylotypes from which 35% had a close match in the sequence databases. The fungal communities of the samples were related with the measured environmental variables in order to identify phylotypes typical of certain composting conditions. The fungal phylotypes could be grouped into those that dominated the mesophilic low pH initial phases (sequences similar to genera Candida, Pichia and Dipodascaceae) and those found mostly or exclusively in the thermophilic phase (sequences clustering to Thermomyces, Candida and Rhizomucor), but a few were also present throughout the whole process. Conclusions: The community composition was found to vary between suboptimally and optimally operating processes. In addition, there were differences in fungal communities between processes of industrial and pilot scale. Significance and Impact of the Study: The results of this study reveal the fungal diversity with molecular methods in industrial composting process. This is also one of the first studies conducted with samples from an industrial biowaste composting process.  相似文献   
10.
The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM® process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号