首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   9篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2015年   2篇
  2013年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
Nasal discs have been used to identify ducks in studies of survival and reproduction. To date, there has not been a comprehensive assessment of nasal-disc effects on the vital rates of wild ducks. We applied nasal discs to 603 juvenile and 784 adult lesser scaup (Aythya affinis) females from a population breeding in southwest Montana, USA, and released 1,399 juvenile and 71 adult females wearing only metal leg bands between June 2005 and September 2016. Using resighting, recapture, and hunter-recovery data collected from those individuals, we estimated survival and recovery probability with multistate capture-recapture models in Program MARK. We also assessed if recovery distance from our study site and pre-breeding and brood-rearing body condition were diminished for females wearing nasal discs. Model-averaged survival probabilities were 0.231 ± 0.035 (SE) for juveniles and 0.482 ± 0.019 for adults released with nasal discs. Survival was 1.8–3.4 times higher for females released with metal leg bands when compared to those released with nasal discs; survival of these juveniles was 0.433 ± 0.049 and 0.693 ± 0.039 for adults. We did not find evidence for recovery probability or recovery distance varying between females that wore nasal discs and those that did not. During the pre-breeding and brood-rearing seasons, we did not find females wearing nasal discs to be in lower body condition when compared to unmarked females. Our comprehensive assessment of nasal discs on wild lesser scaup suggests that survival probabilities estimated from nasal-marked study populations should be cautiously interpreted as minimum estimates. © 2021 The Wildlife Society.  相似文献   
2.
Wildlife density estimates are important to accurately formulate population management objectives and understand the relationship between habitat characteristics and a species’ abundance. Despite advances in density and abundance estimation methods, management of common game species continues to be challenged by a lack of reliable population estimates. In Washington, USA, statewide American black bear (Ursus americanus) abundance estimates are predicated on density estimates derived from research in the 1970s and are hypothesized to be a function of precipitation and vegetation, with higher densities in western Washington. To evaluate current black bear density and landscape relationships in Washington, we conducted a 4-year capture-recapture study in 2 areas of the North Cascade Mountains using 2 detection methods, non-invasive DNA collection and physical capture and deployment of global positioning system (GPS) collars. We integrated GPS telemetry from collared bears with spatial capture-recapture (SCR) data and created a SCR-resource selection model to estimate density as a function of spatial covariates and test the hypothesis that density is higher in areas with greater vegetative food resources. We captured and collared 118 bears 132 times and collected 7,863 hair samples at hair traps where we identified 537 bears from 1,237 detections via DNA. The most-supported model in the western North Cascades depicted a negative relationship between black bear density and an index of human development. We estimated bear density at 20.1 bears/100 km2, but density varied from 13.5/100 km2 to 27.8 bears/100 km2 depending on degree of human development. The model best supported by the data in the eastern North Cascades estimated an average density of 19.2 bears/100 km2, which was positively correlated with primary productivity, with resulting density estimates ranging from 7.1/100 km2 to 33.6 bears/100 km2. The hypothesis that greater precipitation and associated vegetative production in western Washington supports greater bear density compared to eastern Washington was not supported by our data. In western Washington, empirically derived average density estimates (including cubs) were nearly 50% lower than managers expected prior to our research. In eastern Washington average black bear density was predominantly as expected, but localized areas of high primary productivity supported greater than anticipated bear densities. Our findings underscore the importance that black bear density is not likely uniform and management risk may be increased if an average density is applied at too large a scale. Disparities between expected and empirically derived bear density illustrate the need for more rigorous monitoring to understand processes that affect population numbers throughout the jurisdiction, and suggest that management plans may need to be reevaluated to determine if current harvest strategies are achieving population objectives. © 2019 The Wildlife Society.  相似文献   
3.
4.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   
5.
Many monitoring programs for white-tailed deer (Odocoileus virginianus) on both private and public lands across the United States have long relied on the use of road-based spotlight surveys for monitoring population size and trends. Research has suggested spotlight surveys are ineffective and that road-based surveys for deer are biased because of highly variable detection rates. To evaluate variability in detection rates relative to the assumption that repeated surveys along roads will provide reliable trend data for use in calculating deer density estimates, we collected 5 years of thermal-imager and spotlight survey data using a multiple-observer, closed-capture approach. Using a Huggin's closed capture model, data bootstrapping, and variance components analyses, our results suggest that density estimates for white-tailed deer generated from data collected during road-based spotlight surveys are likely not reflective of the standing deer population. Detection probabilities during individual spotlight surveys ranged from 0.00 to 0.80 (median = 0.45) across all surveys, and differed by observer, survey, management unit, and survey transect replicate. Mean spotlight detection probability (0.41) and process standard deviation (0.12) estimates indicated considerable variability across surveys, observers, transects, and years, which precludes the generation of a correction factor or use of spotlight data to evaluate long-term trends at any scale. Although recommended by many state, federal, and non-governmental agencies, our results suggest that the benefit of spotlight survey data for monitoring deer populations is limited and likely represents a waste of resources with no appreciable management information gained. © 2012 The Wildlife Society.  相似文献   
6.
We used a longitudinal capture-recapture study to estimate the age-specific probabilities of first return to the breeding colony and annual survival rates for male gray seals ( Halichoerus grypus ), based on resightings of seals branded as young on Sable Island. We estimated that the average age of first returns for seals born in 1969–1970 to be 9.1 (SE 0.4) yr; for seals born in 1973–1974 it is estimated to be 9.8 (SE 0.2) yr. The estimated annual survival rate of these males was estimated to be 0.976 (SE 0.003).  相似文献   
7.
8.
Although much is known about the humpback whale, Megaptera novaeangliae, regional studies have been unable to answer several questions that are central to the conservation and management of this endangered species. To resolve uncertainties about population size, as well as the spatial and genetic structure of the humpback whale population in the North Atlantic, we conducted a two-year ocean-basin-wide photographic and biopsy study in 1992-1993. Photographic and skin-biopsy sampling was conducted of animals in feeding and breeding areas throughout most of the range of this species in the North Atlantic, from the West Indies breeding grounds through all known feeding areas as far north as arctic Norway. A standardized sampling protocol was designed to maximize sample sizes while attempting to ensure equal probability of sampling, so that estimates of abundance would be as accurate and as precise as possible. During 666 d at sea aboard 28 vessels, 4,207 tail fluke photographs and 2,326 skin biopsies were collected. Molecular analyses of all biopsies included determination of sex, genotype using six microsatellite loci, and mitochondrial control region sequence. The photographs and microsatellite loci were used to identify 2,998 and 2,015 individual whales, respectively. Previously published results from this study have addressed spatial distribution, migration, and genetic relationships. Here, we present new estimates of total abundance in this ocean using photographic data, as well as overall and sex-specific estimates using biopsy data. We identify several potential sampling biases using only breeding-area samples and report a consistent mark-recapture estimate of oceanwide abundance derived from photographic identification, using both breeding and feeding-area data, of 10,600 (95% confidence interval 9,300-12,100). We also report a comparable, but less precise, biopsy-based estimate of 10,400 (95% confidence interval of 8,000-13,600). These estimates are significantly larger and more precise than estimates made for the 1980s, potentially reflecting population growth. In contrast, significantly lower and less consistent estimates were obtained using between-feeding-area or between-breeding-area sampling. Reasons for the lower estimates using the results of sampling in the same areas in subsequent years are discussed. Overall, the results of this ocean-basin-wide study demonstrate that an oceanwide approach to population assessment of baleen whales is practicable and results in a more comprehensive understanding of population abundance and biology than can be gained from smaller-scale efforts.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号