首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   18篇
  国内免费   27篇
  2024年   1篇
  2023年   8篇
  2022年   22篇
  2021年   19篇
  2020年   18篇
  2019年   13篇
  2018年   11篇
  2017年   15篇
  2016年   24篇
  2015年   18篇
  2014年   18篇
  2013年   29篇
  2012年   15篇
  2011年   17篇
  2010年   9篇
  2009年   18篇
  2008年   14篇
  2007年   13篇
  2006年   19篇
  2005年   13篇
  2004年   14篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有447条查询结果,搜索用时 194 毫秒
1.
Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the ‘silent’ pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion.  相似文献   
2.
3.
4.
5.
The literature relating to chemical, biochemical and biological aspects of the steroidal glycoalkaloid, α-tomatine, is reviewed. The alkaloid, which can be used as a starting compound for the synthesis of steroidal hormones, is toxic to a wide range of living organisms. The significance of tomatine to plants which elaborate it is discussed and some possible uses of the compound are mentioned.  相似文献   
6.
7.
Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol's action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to the nucleosome. Our findings support that cholesterol assists 10 and 30 nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.  相似文献   
8.
The health, postrelease movements, and behavior of mass stranded Atlantic white‐sided dolphins (Lagenorhynchus acutus) and short‐beaked common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, were evaluated. Health was assessed through physical examination and blood analysis. Eleven dolphins (eight white‐sided dolphins and three common dolphins) were relocated, outfitted with satellite transmitters, and released during seven mass stranding events. Five transmitters recorded only location, and six also included a time‐depth recorder. Transmission duration ranged from 8 h to 218 d, with a mean of 117 d (median = 118 d, SD = 82 d), after release. All dolphins demonstrated extensive movement throughout the Gulf of Maine. The distribution of tagged dolphins was considered normal based on comparisons with published data for these species. Excluding the dolphin that transmitted for only 8 h, mean minimum speeds for individual dolphins ranged from 3.4 to 6.6 km/h; overall mean for all dolphins was 5.4 km/h (SD = 0.9 km/h). The five dolphins with time‐depth recorders had mean dive depths of 8.6–40.3 m and mean dive durations of 46–296 s. Hematologic and biochemical data revealed only minor abnormalities. Data suggest that at least 10 of the 11 dolphins were likely successfully reintroduced into the wild.  相似文献   
9.
Leucine rich repeat kinases 1 and 2 (LRRK1 and LRRK2) are paralogs which share a similar domain organization, including a serine-threonine kinase domain, a Ras of complex proteins domain (ROC), a C-terminal of ROC domain (COR), and leucine-rich and ankyrin-like repeats at the N-terminus. The precise cellular roles of LRRK1 and LRRK2 have yet to be elucidated, however LRRK1 has been implicated in tyrosine kinase receptor signaling1,2, while LRRK2 is implicated in the pathogenesis of Parkinson''s disease3,4. In this report, we present a protocol to label the LRRK1 and LRRK2 proteins in cells with 32P orthophosphate, thereby providing a means to measure the overall phosphorylation levels of these 2 proteins in cells. In brief, affinity tagged LRRK proteins are expressed in HEK293T cells which are exposed to medium containing 32P-orthophosphate. The 32P-orthophosphate is assimilated by the cells after only a few hours of incubation and all molecules in the cell containing phosphates are thereby radioactively labeled. Via the affinity tag (3xflag) the LRRK proteins are isolated from other cellular components by immunoprecipitation. Immunoprecipitates are then separated via SDS-PAGE, blotted to PVDF membranes and analysis of the incorporated phosphates is performed by autoradiography (32P signal) and western detection (protein signal) of the proteins on the blots. The protocol can readily be adapted to monitor phosphorylation of any other protein that can be expressed in cells and isolated by immunoprecipitation.  相似文献   
10.
Abstract

This short review takes into consideration the status of lipidomics as issued from almost a decade of development. Because of the huge number of molecular species analyzed, there is a trend in subdividing lipidomics according to subdomains, in particular relating to the function of molecules. It is also pointed out that lipid imaging without the use of exogenous probes will help making relationships between molecular structures and the topography of lipid assemblies, especially in cellular compartments. Finally, a fluxomics approach is proposed for lipid molecular species, both in terms of compartments and biochemical metabolism. The example of fluxolipidomics of essential fatty acids toward their enzyme-dependent oxygenated metabolites and further toward their degradation products is developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号