首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  2023年   2篇
  2021年   1篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1989年   2篇
  1986年   1篇
排序方式: 共有43条查询结果,搜索用时 281 毫秒
1.
A brief survey is presented on fossil reproductive structures of early Angiosperms from the Lower and mid-Cretaceous and at the same time on the reproductive structures of those extant Angiosperms which resemble most closely these fossils and which seem to be especially primitive also on other grounds: a first group (Degeneriaceae, Himantandraceae, Eupomatiaceae, Austrobaileyaceae) possessing relatively complicated and conspicuous flowers with elaborated inner staminodes, a second group (Chloranthaceae, Trimeniaceae, Amborellaceae) possessing small and relatively simple, inconspicuous flowers with peculiar features in the carpels, and a third group (Winteraceae) possessing flowers with unusual variability in organ number and size. The three groups exhibit a certain diversity in pollination biology, although cantharophily seems to prevail, however different the cantharophily character syndromes may be between the groups. In the extant primitiveMagnoliidae variability occurs on other morphological levels than in the higher advanced Angiosperms. This has to be taken into consideration in evaluations of the systematic relationships of the various groups of theMagnoliidae. Presumably often their relationships are closer than it may appear at first sight. This is also true for the three groups here discussed.  相似文献   
2.
The number of pollen sacs per anther and their position have traditionally been among the most important systematic characters in the Lauraceae. Opinions differ, however, about the evolutionary direction in these characters. This paper is intended to draw attention to little known morphological features of the stamens, in particular to transitions between disporangiate and tetrasporangiate anthers. In addition, the phylogenetic derivation of the stamen appendages is discussed. It is hypothesized that branched androecial structures may be primitive within the Laurales, if not in the angiosperms as a whole.  相似文献   
3.
Localization of the stamens can be approached by a preliminary distinction between two characters, oligomery and polymery, occurring in two different groups of taxa, respectively the oligomerous complex and the polymerous complex. Oligomery is described by four character states standing in a close semophyletic relationship: diplostemony, obdiplostemony, haplostemony and obhaplostemony. Each character state is analysed for its distribution and systematic value. Diplostemony is the synapomorphic character state for the oligomerous line and has arisen once from a polymerous ancestor or in parallel in different lines. Obdiplostemony arises ontogenetically in three different ways. Loss of one whorl leads either to obhaplostemony, or haplostemony; both character states are believed to represent evolutionary steps of no-return. Secondary increases and reductions of the stamens within a whorl are seen as expressions of the intrinsic variability of the character states and should not be homologized with them. Stamen numbers can be increased by the building-up of complex primordia or by secondary receptacular growth. Reductions of stamens affect one or two whorls of stamens and are caused by lack of space, interactions with the gynoecium and zygomorphy. The distribution of the different character states of oligomery is presented on Dahlgrenograms and the androecia of a number of families and their relationships are discussed. The interactions between oligomery and polymery are analysed as guidelines for a global phylogeny of the Magnoliatae.  相似文献   
4.
Flowers ofEucalyptus clöeziana have two clearly distinct perianth whorls. The small free parts of the outer (calycine) whorl cease growth early and are lost from the flower; the parts of the inner (corolline) whorl become continuous laterally by confluence of growth centres and form an operculum in the mature flower. The stamens are inserted on a circumfloral buttress (staminophore) that is homologous to the adaxial corolline component inAngophora and the bloodwood andEudesmia eucalypts. Flowers ofMonocalyptus have only one perianth whorl, which is opercular. The stamens are similarly inserted on a circumfloral buttress. Developmental study does not provide conclusive evidence for either a calycine or corolline determination of theMonocalyptus operculum, but comparison with other eucalypt groups, includingE. clöeziana (the sister taxon), predicts an essentially corolline composition.  相似文献   
5.
Floral development was compared with scanning electron microscopy in 12 Australian species of Hibbertia representing most of its morphological variation, and in the related Adrastaea (Dilleniaceae). Calyx and corolla arise in quincuncial helices in radially symmetrical species, while the petals initiate unidirectionally from one side in zygomorphic species. Stamen number (3-200+) proliferates by centrifugal addition of individual primordia or by innovations of common primordia and ring meristems. Common primordia arise in single-stamen positions alternately with petals, and each produces one to several stamens centrifugally that remain attached to a shared base and form a stamen fascicle. A ring meristem in Adrastaea initiates a whorl of five stamens, alternate with the first stamens but outside their whorl. In radially symmetrical species of Hibbertia, a first ring of stamens is supplemented centrifugally by additional stamens on a meristem ring. The first stamens in zygomorphic species of Hibbertia initiate as a terminal ridge on the floral apex, with subsequent stamens added centrifugally on one side and two carpels initiated on the opposite side. The carpels arise as a simultaneous ring in radially symmetrical flowers, or as a simultaneous pair in zygomorphic species. Staminodial presence is viewed as of minor significance. Four pollinator syndromes are proposed for Hibbertia, related to differing floral architecture.  相似文献   
6.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   
7.
8.
 Floral organogenesis of Chloranthus sessilifolius K. F. Wu is described. The inflorescence primordium is dome-like in the beginning and then elongates, and bract primordia initiate almost decussately. Each floral primordium, arising from the axil of a bract, soon becomes a scale-like structure, with three primordia of androecial lobes originating from its abaxial part, and the gynoecial primordium in adaxial position. As the androecial lobes become more distinct, four thecae are already in differentiation, and the gynoecial primordium appears as a shallow disc. The androecial lobes do not extend their length until the thecae approach maturity and the stigma is differentiated. The androecial lobes are united at all the stages of development, and the entire androecium falls off as a unit at the end of anthesis. Based on these results, combined with published evidence from neobotany, palaeobotany and phylogenetic studies, the morphological nature of the androecium of Chloranthus is further discussed. Our studies support the viewpoint that the androecial structure of Chloranthus may have arisen by splitting of a single stamen with 2 marginal thecae. Received May 2, 2001 Accepted December 18, 2001  相似文献   
9.
The floral development of representatives of six genera ofCistaceae has been studied. Calyx development involves the formation of a ring primordium in several taxa. Androecium development in species with intermediate or higher stamen numbers starts with the formation of a ring meristem on which the stamens are initiated in a centrifugal direction. In many taxa five alternipetalous leading stamen primordia can be observed. In the apetalous (cleistogamous) flowers ofTuberaria inconspicua androecium development appears to be unordered; this is probably due to the lack of petals. InLechea intermedia (also cleistogamous) the corolla is trimerous and three complex stamen primordia are produced, which give rise either to one or three stamens. Relationships withinCistaceae are discussed. Floral development inCistaceae is compared with that in otherMalvanae. Among the eight families ofMalvanae from which information on floral development is availableCochlospermaceae andBixaceae exhibit the greatest similarities toCistaceae. InCistaceae the leading stamen primordia are alternipetalous. InBixa the same condition seems to be present. InMalvales s. str. mostTiliaceae also show earliest stamen initiation in alternipetalous sectors, whereas the stamens of the innermost alternipetalous position are retarded early or even suppressed inSterculiaceae, Bombacaceae, andMalvaceae. WithinMalvales s. str. the diversity of androecial developmental patterns seems to decrease inBombacaceae andMalvaceae due to increasing synorganization in the mature androecium. The derivation of polyandry inMalvanae from diplo- or obdiplostemony is discussed by comparison with the sister clades ofMalvanae as shown in recentrbcL studies (i.e.Sapindales, Rutales, the glucosinolate producing clade, andMyrtales).  相似文献   
10.
Floral structure of all putative families of Crossosomatales as suggested by molecular studies was comparatively studied. The seven comprise Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, and Strasburgeriaceae. The entire clade (1) is highly supported by floral structure, also the clades (in sequence of diminishing structural support): Ixerbaceae/Strasburgeriaceae (2), Geissolomataceae/Ixerbaceae/Strasburgeriaceae (3), Aphloiaceae/Geissolomataceae/Ixerbaceae/Strasburgeriaceae (4), and Crossosomataceae/Stachyuraceae/Staphyleaceae (5). Among the prominent floral features of Crossosomatales (1) are solitary flowers, presence of a floral cup, imbricate sepals with outermost smaller than inner, pollen grains with horizontally extended endoapertures, shortly stalked gynoecium, postgenitally united carpel tips forming a compitum, stigmatic papillae two‐ or more‐cellular, ovary locules tapering upwards, long integuments forming zigzag micropyles, cell clusters with bundles of long yellow crystals, mucilage cells, seeds with smooth, sclerified testa and without a differentiated tegmen. Clade (2) is characterized by large flowers, petals forming a tight, pointed cone in bud, stamens with long, stout filaments and sagittate anthers, streamlined, conical gynoecium, antitropous ovules, rudimentary aril, lignified, unicellular, T‐shaped hairs and idioblasts with striate mucilaginous cell walls. Clade (3) is characterized by alternisepalous carpels, punctiform stigma formed by postgenitally united and twisted carpel tips, synascidiate ovary, only one or two pendant ovules per carpel, nectary recesses between androecium and gynoecium. Clade (4) is characterized by pronounced ‘pollen buds’. Clade (5) is characterized by polygamous or functionally unisexual flowers, x‐shaped anthers, free and follicular carpels (not in Stachyuraceae). Crossosomataceae and Aphloiaceae, although not retrieved as a clade in molecular studies, share several special floral features: polystemonous androecium; basifixed anthers without a connective protrusion; stigma with two more or less decurrent crests; camplyotropous ovules and reniform seeds; simple, disc‐shaped nectaries and absence of hairs. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 147 , 1–46.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号