首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   8篇
  国内免费   11篇
  2023年   2篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   13篇
  2012年   7篇
  2011年   11篇
  2010年   5篇
  2009年   8篇
  2008年   11篇
  2007年   6篇
  2006年   11篇
  2005年   10篇
  2004年   8篇
  2003年   11篇
  2002年   7篇
  2001年   1篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
排序方式: 共有210条查询结果,搜索用时 453 毫秒
1.
Oxygen concentrations stimulated growth (maximum number of cells) and protease secretion by Tetrahymena thermophila. Agitation and aeration conditions for growth and protease secretion were optimised by a central composite design. The best optimised combination was a stirrer speed of 338 rpm and an aeration of 1 vvm. Journal of Industrial Microbiology & Biotechnology (2000) 25, 58–61. Received 24 September 1999/ Accepted in revised form 06 March 2000  相似文献   
2.
Studies were carried out in Lake Mutek (Mazurian Lakeland) on the effect of artificial aeration and destratification upon quantitative changes in the phytoplankton. These studies were carried out from 1977 until 1983. Two different methods of aeration were used. Low intensity mixing resulted initially in a two-fold, and later on in a four-fold increase of the phytoplankton biomass. Increase of phytoplankton biomass during lake aeration was due to the development of Ceratium hirudinella. Use of a highly effective air-compressor caused an inhibition of algal development, so that biomass dropped to levels noted in the control year. It was found that the effect of aeration depended on the ratio between lake area and effectiveness of the aerator. Only intensive mixing of the water masses resulted in an inhibition of the development of algae. The effect of artificial destratification was also reflected in changes of the species structure, seasonal succession of the algae, and physiological state of the phytoplankton. Artificial circulation stimulated development of algae characterized by relatively high specific weight, i.e. most of all of Pyrrophyta, Bacillariophyceae and some species of Chlorophyta. Various aspects were discussed of the use of direct aeration as a technical method of lake restoration.  相似文献   
3.
Summary A gas transport system based upon the physico-chemical effect of thermo-osmosis of gases in described for the black alder, Alnus glutinosa (L.) Gaertn. Air is transported through the alder's stem to the roots, thus improving O2 supply to respiring tissues of the root system. The gas transport system is investigated by means of a tracer gas technique (11% ethane in air, v/v). Gas transport depends on any source of radiant heat generating a temperature difference between the tree's stems and the atmosphere. The amount of gas transported in leafless trees is four times higher than the amount of gas reaching the roots by gas diffusion. Two-thirds of the gas is transported in the wood, only one-third in the bark. Intercellular spaces inside the porous lenticels of the bark are responsible for this kind of gas transport. Their diameters are estimated by the effusion rates of different tracer gases to be in the range of 1 m.  相似文献   
4.
Oxygen uptake measurements have shown that pressurized gas transport, resulting from the physical effect of thermo-osmosis of gases, improves oxygen supply to the roots of the seedlings in two alder speciesAlnus japonica (Thunb.) Steud. andAlnus hirsuta (Spach) Rupr., which are both native in Japan. When gas transport conditions were established by irradiation of the tree stems the internal aeration was increased to a level nearly equal to the oxygen demand of the root system in leafless seedlings ofA. hirsuta, but was higher inA. japonica so that excess oxygen was excreted into the environment. An increase of superoxide dismutase (SOD) activity, which protects plants from toxic oxygen radicals and post-anoxic injury, has been observed in root tissues ofA. japonica when the seedlings were flooded for 3 days. The increase of SOD activity, in concert with high gas transport rates, may enable this tree species to grow in wet sites characterized by low oxygen partial pressure in the soil and by varying water tables. A less effective gas transport, flood-induced reduction of SOD activity in root tissues, and reduced height growth in waterlogged soil may be responsible for the fact thatA. hirsuta is unable to inhabit wettland sites.  相似文献   
5.
Fenge  Christel  Klein  Cornelia  Heuer  Carsten  Siegel  Ursula  Fraune  Elisabeth 《Cytotechnology》1993,11(3):233-244
For an optimized bioreactor design which is adapted to the cultivation of sensitive animal cells different modular bioreactor components for gentle agitation, sufficient aeration and long-term perfusion were developed and investigated with respect to their suitability from laboratory to production scale. Aeration systems have been designed for both shear sensitive cells and cells which tolerate bubbles. The systems are based on either membranes for bubble-free aeration or stainless steel sparger systems. They were characterized by determination of their oxygen transfer capacity and optimized in cultivation processes of different cell lines under process conditions such as batch and perfusion mode.Different impellers for suspension cells and cells grown on carriers were investigated for their suitability to ensure homogeneous gentle mixing. A large pitch blade impeller as well as a novel 3-blade segment impeller are appropriate for homogeneous mixing at low shear rates. Especially with the 3-blade segment impeller fluid mechanical stress can be reduced at a given stirrer speed which is advantageous for the cultivation of cells attached to microcarriers or extremely shear sensitive suspension cells. However, our results indicate that shear sensitivity of animal cells has been generally overestimated.Continuous perfusion of both suspension cell cultures and cells cultivated on microcarriers could be successfully performed over extended periods of time using stainless steel spinfilters with appropriate pore sizes and systems based on microporous hydrophilic membranes. Spinfilters are suitable cell retention systems for technical scale bioreactors allowing continuous perfusion cultures of suspension cells (pore size 10 to 20 m) as well as anchorage dependent cells grown on microcarriers (pore size 75 m) over six weeks to 3 months.Applying the developed modules for agitation, aeration and perfusion process adapted bioreactor set-ups can be realized which ensure optimum growth and product formation conditions in order to maximize cell and product yields.  相似文献   
6.
7.
Different dissolved oxygen concentrations and aeration rates were imposed on a stable mutant of Streptomyces fradiae during the antibiotic-producing phase. At high aeration rate (1 vvm), the tylosin yield in the fermentor broth with dissolved oxygen (DO) concentrations controlled close to 100% saturation (6-8 ppm) increased 10% as against uncontrolled. The rates of cellular growth, oil consumption, and tylosin production were severely reduced when DO concentration fell below 25% saturation, but all resumed to their initial rates when DO was raised to saturation level again. The DO concentration in combination with air flow rate affected the pattern of the antibiotics produced. At high DO levels, an additional macrolide antibiotic, macrocin, was synthesized to more than one-third the amount of tylosin at high aeration rate (1 vvm). On the other hand, tylosin production rate remained constant and no significant amount of macrocin was produced at low aeration rate (0.2 vvm).  相似文献   
8.
A new type of bubble aeration column called a hollow fiber membrane (HFM) aeration column was proposed, which was featured in the use of hollow fiber membranes and gave a high bubble density in the column. The value of k(L)a was increased by modifying the membrane surface for making the pore size smaller. The Sauter mean diameter of bubbles (D(vs)) was 2.0 +/- 0.1 mm in the range of the superficial gas velocity from 0.02 m s(-1) to 0.065 m s(-1), while that obtained for the bubbles near the membrane was 811 mum at the superficial gas velocity of 4.0 x 10(-4) m s(-1). The difference was ascribed to the effect of coalescence of bubbles. The value of K(L)a increased in proportion to the superficial gas velocity up to 0.02 m s(-1), and was almost constant above 0.03 m s(-1). The maximum value of k(L)a, 2.5 s(-1), was higher than those of the other aeration columns reported previously. The pneumatic power consumption per unit liquid volume (P(v)) for obtaining the same k(L)a was the smallest in the HFM aeration columns. P(v), for obtaining the same interfacial area of bubbles per liquid volume, was also lower than those for other types of aeration columns. It was suggested from the measurement of bubble diameter that the larger interfacial area generated in the HFM aeration column ascribes to the larger gas holdup than the smaller D(vs). (c) 1992 John Wiley & Sons, Inc.  相似文献   
9.
Summary Aeration of tissue cultured rare Australian plantsConostylis wonganensis S.D. Hopper (Haemodoraceae);Diplolaena andrewsii Ostenf.;Drummondita ericoides Harvey (Rutaceae);Eremophila resinosa F. Muell. (Myoporaceae);Eucalyptus ‘graniticola’ (Myrtaceae);Lechenaultia pulvinaris C. Gardner (goodeniaceae); andSowerbaea multicaulis E. Pritzel (Liliaceae) has been found to reduce vitrification in sensitive species as well as significantly improving shoot quality and transfer to soil in most study species. A simple 7-mm hole with a double-layer insert of filter paper in the polypropylene screw lids of the culture vessel decreased shoot vitrification over a 4-wk culture period. The method has implications for facilitating the tissue culture of other rare Australian plants and reducing the occurrence of this developmental abnormality.  相似文献   
10.
The ability of crops of sorghum (Sorghum bicolor (L.) Moench) to establish in farmers' fields depends largely on its capacity to germinate and emerge under limited soil moisture conditions. Studies on germination under moisture stress have been previously conducted using osmotic media which do not wholly reproduce the conditions of the seed bed in the field. Hence the need for a field screening technique. A line source irrigation system was used to provide five moisture regimes ranging from -0.08 MPa to -0.92 MPa. The drying rate of the soil and the soil temperature depended largely on incident radiation, and the relationship between the moisture content and daily soil temperature and daily radiation was consistant. Total porosity of the seed bed, derived from bulk density measurements and particle density ranged from 43.8% to 45.3%, which would allow sufficient aeration when as in the experiments conducted here, water content was low (> 0.14 g/g). Under these seed bed conditions the pattern of response of emergence to the moisture gradient was linear or curvilinear. Genotypic differences existed for emergence and its response to water level. The field method developed is useful for identifying genotypes able to germinate and emerge under conditions of low seed bed moisture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号