首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The rapid spreading of the disease during last few years highlighted the need of a quick, sensitive and reliable method for Pseudomonas syringae pv. actinidiae (Psa) detection, to find possible inoculum sources and limit the pathogen spreading. A PCR method, using new primers designed on the gene encoding a putative outer membrane protein P1, was developed to detect Psa in symptomatic and asymptomatic tissue; a nested‐PCR was also applied. Bleeding sap samples, collected in early spring from orchards with symptomatic and asymptomatic trees, were used both for PCR assays and for pathogen isolation and identification. The PCR and nested PCR methods were able to detect Psa presence at very low concentration from plant and pollen extracts; RFLP analyses with BclI on PCR and nested PCR amplicons confirmed the assay specificity, while the digestion with BfmI and AluI allowed to discriminate Psa strains isolated before 2008 from those isolated after 2008. Furthermore, the PCR and nested PCR on crude bleeding sap samples detected the presence of the pathogen in 3 and 5 of the 15 assayed samples, respectively. Direct isolation from the same samples and bacterial identification confirmed the results of molecular analysis.  相似文献   
2.
猕猴桃细菌性溃疡病流行预测初探   总被引:22,自引:2,他引:20  
对猕猴桃溃疡病流行分析表明,影响该病发生严重程度y的生态因子是3月中下旬降水x1和1月份均温x2,其模型是y=2.1359 0.0107x1-0.6061x2;猕猴桃溃疡病发生流行的主导因子为冬季及初春旬均温和降水量的相对变差,并且由此得到病害流行的回归方程为:y=-8.127 22.739x-13.254x^2,经检验,该方程达极显著水平。  相似文献   
3.
Abstract

Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, is considered the main pathogen of yellow-, green- and red-fleshed kiwifruit. All major kiwifruit producing countries in the world have been affected by this bacterial pathogen, leading to substantial economic losses. The control of bacterial canker of kiwifruit is based only on preventive methods or on the use of copper compounds that can cause phytotoxicity problems. In this study, the in vitro antibacterial activity of seven different plant extracts against eight Psa strains has been evaluated. The inhibition of 100% of the Psa growth was observed, after 24?h, for the extracts of Polygonum cuspidatum roots (POL-roots), Hypericum perforatum roots elicited with chitosan oligosaccharides (HYP-COS roots) and non-fermented grape pomace (ITA-pomace). The strongest antibacterial activity was exhibited by POL-roots, with a geometric mean of minimum inhibitory concentration of 100% of growth (GMMIC100) of 105.11 µg/mL after 24?h, and with a GMMIC100 value of 148.65 µg/mL after 48?h. Moreover, POL-roots extract showed the best bactericidal activity with a GMMBC of 210.22 µg/mL. No phytotoxic activity was observed up to 15 days in the leaves of Actinidia chinensis “Belen” treated with plant extracts at 500 µg/mL.  相似文献   
4.
The use of lactic acid bacteria (LAB) to control multiple pathogens that affect different crops was studied, namely, Pseudomonas syringae pv. actinidiae in kiwifruit, Xanthomonas arboricola pv. pruni in Prunus and Xanthomonas fragariae in strawberry. A screening procedure based on in vitro and in planta assays of the three bacterial pathogens was successful in selecting potential LAB strains as biological control agents. The antagonistic activity of 55 strains was first tested in vitro and the strains Lactobacillus plantarum CC100, PM411 and TC92, and Leuconostoc mesenteroides CM160 and CM209 were selected because of their broad‐spectrum activity. The biocontrol efficacy of the selected strains was assessed using a multiple‐pathosystem approach in greenhouse conditions. L. plantarum PM411 and TC92 prevented all three pathogens from infecting their corresponding plant hosts. In addition, the biocontrol performance of PM411 and TC92 was comparable to the reference products (Bacillus amyloliquefaciens D747, Bacillus subtilis QST713, chitosan, acibenzolar‐S‐methyl, copper and kasugamycin) in semi‐field and field experiments. The in vitro inhibitory mechanism of PM411 and TC92 is based, at least in part, on a pH lowering effect and the production of lactic acid. Moreover, both strains showed similar survival rates on leaf surfaces. PM411 and TC92 can easily be distinguished because of their different multilocus sequence typing and random amplified polymorphic DNA profiles.  相似文献   
5.
6.
Pseudomonas syringae pv. actinidiae ICMP 18884 biovar 3 (Psa3) produces necrotic lesions during infection of its kiwifruit host. Bacterial growth in planta and lesion formation are dependent upon a functional type III secretion system (T3S), which translocates multiple effector proteins into host cells. Associated with the T3S locus is the conserved effector locus (CEL), which has been characterized and shown to be essential for the full virulence in other P. syringae pathovars. Two effectors at the CEL, hopM1 and avrE1, as well as an avrE1-related non-CEL effector, hopR1, have been shown to be redundant in the model pathogen P. syringae pv. tomato DC3000 (Pto), a close relative of Psa. However, it is not known whether CEL-related effectors are required for Psa pathogenicity. The Psa3 allele of hopM1, and its associated chaperone, shcM, have diverged significantly from their orthologs in Pto. Furthermore, the CEL effector hopAA1-1, as well as a related non-CEL effector, hopAA1-2, have both been pseudogenized. We have shown that HopM1 does not contribute to Psa3 virulence due to a truncation in shcM, a truncation conserved in the Psa lineage, probably due to the need to evade HopM1-triggered immunity in kiwifruit. We characterized the virulence contribution of CEL and related effectors in Psa3 and found that only avrE1 and hopR1, additively, are required for in planta growth and lesion production. This is unlike the redundancy described for these effectors in Pto and indicates that these two Psa3 genes are key determinants essential for kiwifruit bacterial canker disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号