首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   16篇
  国内免费   73篇
  2023年   2篇
  2022年   10篇
  2021年   12篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   14篇
  2012年   10篇
  2011年   7篇
  2010年   12篇
  2009年   24篇
  2008年   25篇
  2007年   14篇
  2006年   32篇
  2005年   16篇
  2004年   12篇
  2003年   15篇
  2002年   13篇
  2001年   7篇
  2000年   17篇
  1999年   14篇
  1998年   9篇
  1997年   14篇
  1996年   7篇
  1995年   7篇
  1994年   14篇
  1993年   11篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   8篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   8篇
  1979年   5篇
  1978年   1篇
  1977年   6篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
1.
Summary Exclusive selection for yield raises, the harvest index of self-pollinated crops with little or no gain in total bipmass. In addition to selection for yield, it is suggested that efficient breeding for higher yield requires simultaneous selection for yield's three major, genetically controlled physiological components. The following are needed: (1) a superior rate of biomass accumulation. (2) a superior rate of actual yield accumulation in order to acquire a high harvest index, and (3) a time to harvest maturity that is neither shorter nor longer than the duration of the growing season. That duration is provided by the environment, which is the fourth major determinant of yield. Simultaneous selection is required because genetically established interconnections among the three major physiological components cause: (a) a correlation between the harvest index and days to maturity that is usually negative; (b) a correlation between the harvest index and total biomass that is often negative, and (c) a correlation between biomass and days to maturity that is usually positive. All three physiological components and the correlations among them can be quantified by yield system analysis (YSA) of yield trials. An additive main effects and multiplicative interaction (AMMI) statistical analysis can separate and quantify the genotype × environment interaction (G × E) effect on yield and on each physiological component that is caused by each genotype and by the different environment of each yield trial. The use of yield trials to select parents which have the highest rates of accumulation of both biomass and yield, in addition to selecting for the G × E that is specifically adapted to the site can accelerate advance toward the highest potential yield at each geographical site. Higher yield for many sites will raise average regional yield. Higher yield for multiple regions and continents will raise average yield on a world-wide basis. Genetic and physiological bases for lack of indirect selection for biomass from exclusive selection for yield are explained.  相似文献   
2.
On the analysis of competition at the level of the individual plant   总被引:6,自引:0,他引:6  
Summary The extent to which some measure of local crowding can account for the performance of individual plants is examined with reference to populations of two species of annual plant. Only a relatively small proportion of the variation in individual plant yield could be accounted for by measures of local crowding. These included the number of close neighbours, an estimate of the area available to each plant and competitive pressure. A multiple regression that took account of both emergence time and local crowding increased the proportion of variance that could be accounted for up to 50%. Computer simulations of the growth of indivudual plants in monoculture were then caried out in order to determine whether the unexplained variation resulted from fundamental flaws in the models or from unaccounted for sources of variation in the field. The results from the simulations again indicated that only a relatively low proportion of the variation in individual plant yield could be accounted for by emergence time and local density, even though these were known to be the only variables present. These findings are discussed in relation to the relative importance of one-sided and two-sided competition, and the complex cross-correlations that occur between individuals in plant populations. These two factors will make it very difficult for field workers to determine accurately what factors determine individual plant yield and in particular to predict the effects of local crowding on the performance of individual plants.  相似文献   
3.
High mountain grasslands offer multiple goods and services to society but are severely threatened by improper land use practices such as abandonment or rapid intensification. In order to reduce abandonment and strengthen the common extensive agricultural practice a sustainable land use management of high mountain grasslands is needed. A spatially detailed yield assessment helps to identify possible meadows or, on the contrary, areas with a low carrying capacity in a region, making it easier to manage these sites. Such assessments are rarely available for remote and inaccessible areas. Remotely sensed vegetation indices are able to provide valuable information on grassland properties. These indices tend, however, to saturate for high biomass. This affects their applicability to assessments of high-yield grasslands.The main aim of this study was to model a spatially explicit grassland yield map and to test whether saturation issues can be tackled by consideration of plant species composition in the modelling process. The high mountain grassland of the subalpine belt (1800 – 2500 m a.s.l.) in the Kazbegi region, Greater Caucasus, Georgia, was chosen as test site for its strong species composition and yield gradients.We first modelled the species composition of the grassland described as metrically scaled gradients in the form of ordination axes by random forest regression. We then derived vegetation indices from Rapid Eye imagery, and topographic variables from a digital elevation model, which we used together with the multispectral bands as predictive variables. For comparison, we performed two yield models, one excluding the species composition maps and one including the species composition map as predictors. Moreover, we performed a third individual model, with species composition as predictors and a split dataset, to produce the final yield map.Three main grassland types were found in the vegetation analysis: Hordeum violaceum-meadows, Gentianella caucasea-grassland and Astragalus captiosus-grassland. The three random forest regression models for the ordination axes explained 64%, 33% and 46% of the variance in species composition. Independent validation of modelled ordination scores against a validation data set resulted in an R2 of 0.64, 0.32 and 0.46 for the first, second and third axes, respectively. The model based on species composition resulted in a R2 = 0.55, whereas the benchmark model showed weaker relationships between yield and the multispectral reflectance, vegetation indices, and topographical parameters (R2 = 0.42). The final random forest yield model used to derive the yield map resulted in 62% variance explained and an R2 = 0.64 between predicted and observed biomass. The results further indicate that high yields are generally difficult to predict with both models.The benefit of including a species composition map as a predictor variable for grassland yield lies in the preservation of ecologically meaningful features, especially the occurrence of high yielding vegetation type of Hordeum violaceum meadows is depicted accurately in the map. Even though we used a gradient based design, sharp boundaries or immediate changes in productivity were visible, especially in small structures such as arable fields or roads (Fig. 6b), making it a valuable tool for sustainable land use management. The saturation effect however, was mitigated by using species composition as predictor variables but is still present at high yields.  相似文献   
4.
The influence of red deer (Cervus elaphus) grazing on grassland production for forage conservation at the forest border during the vegetation period was studied on three locations (Mala gora, Cvišlerji, and Mačkovec) in the Kočevje region (SE Slovenia). The experiment lasted from the 25th of March until the 8th of October 2002. Portable cages were used to exclude red deer from grazing the herbage. At four sampling dates in the season, herbage air dry matter (DM) yield was measured at three different observations (cage-protected plot, cage-protected plot only two to three weeks before sampling date, otherwise freely grazed (removed), and unprotected plot). The results from the experiment showed that red deer grazed on grassland through the entire season and that the regeneration capability of sward was the highest in summer, middle in spring and smallest in autumn. On unprotected plots, an average reduction of 50% of herbage DM yield was found with the most damaged sites also up to 80% reduction.  相似文献   
5.
【目的】动物双歧杆菌RH产生的胞外多糖(exopolysaccharides, EPS)经阴离子交换柱层析可获得EPSa和EPSb两个组分。得到可提高EPS的总产量, 尤其是EPSb产量的最佳培养基和培养条件。【方法】对培养基类型、氮源、碳源、碳源浓度、培养基初始pH值、培养温度和时间对双歧杆菌EPSa和EPSb产量的影响进行分析。【结果】在初始pH值调整为7.0的含5%蔗糖的PTYG培养基上, 在35 °C温度下厌氧培养60 h时动物双歧杆菌RH的EPSa和EPSb产量分别为0.982±0.003 g/L和0.312±0.001 g/L。【结论】在上述条件下EPS总产量高且可获得较多的EPSb。  相似文献   
6.

Six fungicides, namely Benlate (benomyl) methyl 1-(butylcarbamoyl)benzimidazol-2-ylcarbamate, 50%WP; Dithane M45 (mancozeb) 1,2-ethanediybis carbamodithioato (2-)manganese +1,2-ethanediybis, 20%Mn + 2.5%Zn; Delsene M, (carbendazim + maneb) methyl benzimidazol-2-ylcarbamate, 10% carbendazim + 60% maneb; Rovral (iprodione), 3-(3,5-dichlorophenyl)-N-isopropyl-2-4-dioxoimidazolidine-1-carboxamide, 50%WP; Cupravit (copper oxychloride) 3Cu(OH)2 · CuCl 2 , 50%WP; and Ridomil (metalaxyl) methyl N-(2-methoxyacetyl)-N-(2,6-xylyl-DL-alaminate), 50%WP were evaluated for their efficacy in the control of brown blotch disease of bambara groundnut caused by Colletotrichum capsici (Syd) Butler and Bisby in field trials. Two of the fungicides, Benlate and Delsene M gave significantlty (P = 0.05) better control of the disease and consequently higher grain yield than the other treatments. The performance of Rovral, Dithane M-45 and Ridomil did not differ significantly from each other and Cupravit did not perform significantly better than the check treatment.  相似文献   
7.

Pearl millet downy mildew (DM) incidence, severity and yield losses of two pearl millet varieties (local and improved) due to the disease were determined in the field. Significant differences in the disease incidence and severity were recorded in the plots sown with metalaxyl-treated seeds and those sown with non-treated seeds, indicating the efficacy of the fungicide on the fungus. Yield losses due to non-treatment of seeds with metalaxyl was 40.88 and 45.39% in a local variety and 43.00 and 18.60% in an improved variety in the 2000 and 2001 cropping seasons respectively. Significant differences between plots sown with metalaxyl-treated and those sown with non-treated seeds were obtained for other yield components such as 1000-grains weight, panicle length and weight.  相似文献   
8.
Plants are confronting a variety of environmental hazards as a result of fast climate change, which has a detrimental influence on soil, plant growth, and nutrient status. As a result, the present study aims to evaluate the influence of various fly ash concentrations (5, 10, 15, 20, 25, 30, and 35% FA) mixed with the optimum concentrations of nitrogen in the form of urea (0.5 g pot?1) on the growth, productivity and biochemical constituents of radish plants. Energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) were used to assess soil physical–chemical properties and FA nutrient status. Results suggested that FA added many essential plant nutrients to the growth substrate and improved some important soil characteristics such as pH, electric conductivity, porosity, and water holding capacity. Also, the results revealed that the low concentrations of FA up to 20% were found to boost radish growth, yield, chlorophyll, carotenoids, and mineral content. While the highest concentrations of FA (25–35%) decreased radish growth and yield, increased oxidative stress through increased lipid peroxidation (MDA) and caused a significant boost in ascorbic acid, proline, protein, and antioxidant enzyme activities. Furthermore, SEM of radish leaf revealed an enhancement in the stomatal pore of radish leaf under different levels of FA. In conclusion, combining 15% fly ash with 0.5 g nitrogen in the form of urea significantly enhanced radish yield by enhancing antioxidant activity such as catalase, peroxidase, ascorbate peroxidase, Guaiacol peroxidase, superoxide dismutase, nitrate reductase and reducing oxidative stress, potentially reducing fly ash accumulation and environmental pollution.  相似文献   
9.
The study aims to investigate the effect of foliar spray with three plant growth regulators (PGRs) p-Chlorophenoxyacetic acid (CPA) at 20 and 40 ppm; Gibberellic acid (GA3) at 20 and 30 ppm, 1-Naphthaleneacetic acid (NAA) at 10 and 20 ppm on the response of fruit set, yield, and fruit quality of some hot pepper cultivars (Chillina, Parbirian, Shampion, and Hyffa) grown in sandy soil under plastic tunnels as compared to the control. Spraying Chillina cultivar GA3 at 30 ppm significantly increased the number of fruits/ plant and fruit set (%), yield/plant, and total yield/fad. In addition, the contents of TSS and Vit C, furthermore, maximum capsaicin content were observed in chili fruits in both seasons. However, the interaction between Chillina cultivar and spraying with GA3 at 20 ppm ranked second in yield and quality. The interaction between Parbirian cultivars and spraying with GA3 at 20 or 30 ppm increased the number of flowers/plants in both seasons. On the other hand, the interaction between Shampion cultivar and spraying with tap water (control) gave the lowest values of the number of flowers/ plants, the number of fruits/ plant and fruit set (%), yield, and its components, and fruit quality in both seasons.  相似文献   
10.
通过对甘农3号、甘农5号和游客紫花苜蓿多元杂交后代选育的36个株系及其亲本的生长、产量、品质等相关指标的测定,采用灰色关联度理论,构造综合评价模型进行供试材料综合评价,筛选出速生12#、速生11#株系为最理想的优良株系,生长高度分别为105.44cm、105.42cm;生长速度分别为1.74cm/d、1.68cm/d;茎叶比分别为0.30、0.35;分枝数分别为23、17;鲜草产量分别为39.99 t/hm2、35.13 t/hm2;粗蛋白含量分别为19.95%、23.89%;相对饲用价值为153.15%、157.02%。多叶2#、速生5#、速生20#、速生21#等4个株系为较理想的优良株系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号